×

Solving IVPs in ODEs by using some \(\mathcal{L}\)-stable methods in variable step-size formulation. (English) Zbl 1474.65218

Summary: In this paper, we propose a one-parameter family of the \(\mathcal{L}\)-stable modified trapezoidal method for solving numerically initial value ordinary differential equations (ODEs). The proposed family has second algebraic order of convergence and is \(\mathcal{L}\)-stable. Further, variable step-size formulation of the proposed methods is considered as embedded-type methods. A comparison of numerical results made by the proposed methods and by the existing classical ODE solver is given.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations

References:

[1] Uri. M. Ascher and Linda. R. Petzold,Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Siam, 1998. · Zbl 0908.65055
[2] J. D. Lambert,Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, first ed., John Wiley, New York, 1991. · Zbl 0745.65049
[3] E. Hairer, S.P. N¨orsett and G. Wanner,Solving Ordinary Differential Equations-I, Springer, Berlin, 1993. · Zbl 0789.65048
[4] E. Fehlberg,Low order classical Runge-Kutta formulas with step-size control and their application to some heat transfer problems, Nasa Technical Report No. 315, George C. Marshall Space Flight Center, Hurtsville, 1969
[5] C. W. Gear,Simulation: Conflicts Between Real Time and Softwarein J. R. Rice (ED.), Mathematical Software III, Academic Press, New York, 1977. · Zbl 0407.68031
[6] C. W. Gear,Numerical solution of ordinary differential equations: is there anything left to do?, SIAM, Rev.2310-24, 1981. · Zbl 0473.65039
[7] M.M. Chawla and M.A. AL-Zanaidi,New L-stable modified trapezoidal formulas for the numerical integration ofy=f(x, y),Int. J. Comp. Maths.63279-288, 1997. · Zbl 0874.65048
[8] G. Singh, V. Kanwar and S. Bhatia,A class of the backward Euler’s method for initial value problems,Res. Jour. Engg. Tech.6(1) 207-211, 2015.
[9] L. F. Shampine, I. Gladwell and S. Thompson,Solving ODEs with Matlab, Cambridge University Press, 2003. · Zbl 1079.65144
[10] J. Stoer and R. Bulirsch,Introduction to Numerical Analysis,Springer, 2002. · Zbl 1004.65001
[11] G. Dahlquist,A special stability problem for linear multi-step methods, BIT,327-43, 1963.
[12] C. C. Jibunoh,An exponential method for accurate and automatic integration of nonlinear (stiff and non-stiff ) ODE systems,J. Nigerian. Math. Soc.34(2) 143-159, 2015. · Zbl 1353.65071
[13] C. C. Jibunoh,Accurate and automatic integration of stiff and non-stiff (ODE) systems via spectral decomposition,J. Nigerian. Math. Soc.29 21-39, 2010. · Zbl 1251.65098
[14] R. I. Okuonghae and M. N. O. Ikhile,On the construction of high-order A(α)-stable hybrid linear multi-step methods for stiff IVPs in ODEs, Num. Ana. Appl.5(3) 231-241, 2012. · Zbl 1299.65137
[15] F. R. Villatoro,Given a one-step numerical scheme, on which ordinary differential equations is it exact ?,J. Comp. Appl. Math.2231058-1065, 2009. · Zbl 1152.65079
[16] A. Abdi,Construction of high-order quadratically stable second derivative general linear methods for the numerical integration of stiff ODEs,J. Comp. Appl. Math.303218-228, 2016. · Zbl 1382.65190
[17] H. Ramos,A non-standard explicit integration scheme for initial-value problems,Appl. Math. Comp.189710-718, 2007. · Zbl 1122.65062
[18] J. I. Ramos,Linearization techniques for singularly-perturbed initial-value problems of ordinary differential equations,Appl. Math. Comp.16311431163, 2005. · Zbl 1067.65065
[19] H. Ramos, G. Singh, V. Kanwar and S. Bhatia,Solving first-order initial value problems by using an explicit non-standardA-stable one-step method in variable step-size formulation,Appl. Math. Comp.268796805, 2015. · Zbl 1410.65256
[20] H. A. Watts,Starting step-size for an ODE solver,J. Comp. Appl. Math. 9177-191, 1983. · Zbl 0513.65046
[21] L. F. Shampine and M. K. Gordon,Computer Solutions of Ordinary Differential Equations: The Initial Value Problem,Freeman, San Francisco, CA, 1975. · Zbl 0347.65001
[22] A. E. Sedgwick,An effective variable order variable-step Adams method, Dept. of Computer Science, Rept. 53, University of Toronto, Toronto, Canada, 1973.
[23] E. Hairer,Unconditionally stable explicit methods for parabolic equations, Numer. Math.3557-68, 1980. · Zbl 0454.65052
[24] A.R. Yaakub and D.J. Evans,New L-stable modified trapezoidal methods for the initial value problems,Int. J. Comp. Maths.80(1) 95-104, 2003. · Zbl 1019.65059
[25] L. F. Shampine and A. Witt,Control of local error stabilizes integrations, J. Comp. Appl. Math.62333-351, 1995 . · Zbl 0858.65087
[26] X. Y. Wu,Exact exponentially fitted method for solving stiff ordinary differential equations,J. Nanjing University (Natural Science)33(1) 16, 1997.
[27] Xin-Yuan Wu and Jian-Lin Xia,Two low accuracy methods for stiff systems,Appl. Math. Comp.123141-153, 2001. · Zbl 1024.65053
[28] P. Bogacki and L. F. Shampine,A3(2)pair of Runge-Kutta formulas, Appl. Math. Letter.21-9, 1998. · Zbl 0705.65055
[29] J. R. Dormand and P.J. Prince,A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math.,619-26, 1980. · Zbl 0448.65045
[30] H. H. Rosenbrock,Some general implicit processes for the numerical solution of differential equations,Comput. J.5329-330, 1963 . · Zbl 0112.07805
[31] L. F. Shampine and M. W. Reichelt,The MATLAB ODE Suite,SIAM J. Sci. Comput.181-22, 1997. · Zbl 0868.65040
[32] R. Ashino, M. Nagase and R. Vaillancourt,Behind and beyond the Matlab ODE suite,Comput. Math. Appl.40491-512, 2000. · Zbl 0955.65055
[33] L. V. Fausett,Applied Numerical Analysis Using Matlab,Pearson Prentice Hall, 2008. · Zbl 0943.65002
[34] H. Ramos,Contributions to the development of differential systems exactly solved by multi step finite-difference schemes,Appl. Math. Comp. 217639-649, 2010. · Zbl 1201.65132
[35] M. Calvo, J. I. Montijano and L. Randez, On the change of step-size in multi-step codes, Numer. Alg. 4 (1993) 283-304. · Zbl 0779.65055
[36] E. Hairer and G. Wanner,Solving Ordinary Differential Equations-II, Springer, Berlin, 1996. · Zbl 0859.65067
[37] M. K. Jain,Numerical Solution of Differential Equations,Wiley, New Delhi, 1984. · Zbl 0536.65004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.