×

Solving first-order initial-value problems by using an explicit non-standard \(A\)-stable one-step method in variable step-size formulation. (English) Zbl 1410.65256

Summary: This paper presents the construction of a new family of explicit schemes for the numerical solution of initial-value problems of ordinary differential equations (ODEs). The one-parameter family is constructed by considering a suitable rational approximation to the theoretical solution, resulting a family with second-order convergence and \(A\)-stable. Imposing that the principal term in the local truncation error vanishes, we obtain an expression for the parameter value in terms of the point \((x_{n}, y_{n})\) on each step. With this approach, the resulting method has third order convergence maintaining the characteristic of \(A\)-stability. Finally, combining this last method with other of order two in order to get an estimation for the local truncation error, an implementation in variable step-size has been considered. The proposed method can be used in a wide range of problems, for solving numerically a scalar ODE or a system of first order ODEs. Several numerical examples are given to illustrate the efficiency and performance of the proposed method in comparison with some existing methods in the literature.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
Full Text: DOI

References:

[1] Ramos, H., A non-standard explicit integration scheme for initial-value problems, Appl. Math. Comp., 189, 710-718 (2007) · Zbl 1122.65062
[2] Ramos, H., Contributions to the development of differential systems exactly solved by multi step finite-difference schemes, Appl. Math. Comp., 217, 639-649 (2010) · Zbl 1201.65132
[3] Ramos, H., A nonlinear explicit one-step integration scheme for singular autonomous initial value problems, (Simos, T., AIP Conference Proceedings 936 (2007), New York), 448-451 · Zbl 1152.65378
[4] Wu, Xin-Yuan; Xia, Jian-Lin, Two low accuracy methods for stiff systems, Appl. Math. Comp., 123, 141-153 (2001) · Zbl 1024.65053
[5] Ahmad, R. R.; Yaacob, N.; Murid, A. H.Mohd, Explicit methods in solving stiff ordinary differential equations, Int. J. Comput. Math., 81, 1407-1415 (2004) · Zbl 1063.65058
[6] Niekerk, F. D.Van, Rational one-step methods for initial value problems, Comput. Math. Appl., 16, 12, 1035-1039 (1988) · Zbl 0663.65069
[7] Shampine, L. F.; Witt, A., Control of local error stabilizes integrations, J. Comp. Appl. Math., 62, 333-351 (1995) · Zbl 0858.65087
[8] Calvo, M.; Montijano, J. I.; Randez, L., On the change of step size in multistep codes, Numer. Alg, 4, 283-304 (1993) · Zbl 0779.65055
[9] Watts, H. A., Starting step size for an ODE solver, J. Comp. Appl. Math., 9, 177-191 (1983) · Zbl 0513.65046
[10] El-Zahar, E. R., A non-linear absolutely-stable explicit numerical integration algorithm for stiff initial-value problems, Ameri. J. Appl. Sci., 10, 1363-1370 (2013)
[12] Dormand, J. R.; Prince, P. J., A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6, 19-26 (1980) · Zbl 0448.65045
[13] Rosenbrock, H. H., Some general implicit processes for the numerical solution of differential equations, Comput. J., 5, 329-330 (1963) · Zbl 0112.07805
[14] Alt, René, A-stable one-step methods with step-size control for stiff systems of ordinary differential equations, J. Comp. Appl. Math., 4, 1 (1978) · Zbl 0386.65035
[15] Lambert, J. D., Nonlinear methods for stiff systems of ordinary differential equations, Proceedings of the conference on numerical solution of ordinary differential equations 363, University of Dundee, 75-88 (1973) · Zbl 0327.65056
[16] Calvo, M.; Mar-Quemada, M., On the stability of rational Runge-Kutta methods, J. Comput. Appl. Math., 8, 289-293 (1982) · Zbl 0495.65032
[17] Sottas, G., Rational Runge-Kutta methods are not suitable for stiff systems of ODEs, J. Comput. Appl. Math., 10, 169-174 (1984) · Zbl 0542.65035
[18] Hairer, E., Unconditionally stable explicit methods for parabolic equations, Numer. Math., 35, 57-68 (1980) · Zbl 0454.65052
[19] Shampine, L. F.; Reichelt, M. W., The MATLAB ODE Suite, SIAM J. Sci. Comput., 18, 1-22 (1997) · Zbl 0868.65040
[20] Shampine, L. F.; Gordon, M. K., Computer Solutions of Ordinary Differential Equations: The Initial Value Problem (1975), Freeman: Freeman San Francisco, CA · Zbl 0347.65001
[21] O’Malley, R. E., Singular Perturbation Methods for Ordinary Differential Equations (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0743.34059
[22] Lambert, J. D., Numerical Methods for Ordinary Differential Systems: The Initial Value Problem (1991), John Wiley: John Wiley New York · Zbl 0745.65049
[23] Jain, M. K.; Iyenger, S. R.K.; Jain, R. K., Numerical Methods for Scientific and Engineering Computation (2012), New Age International (P) Limited, Publishers: New Age International (P) Limited, Publishers New Delhi
[24] Iserles, A., A First Course in the Numerical Analysis of Differential Equations (2009), Cambridge University Press: Cambridge University Press Cambridge, U.K · Zbl 1171.65060
[25] Atkinson, K. E., An Introduction to Numerical Analysis (1989), John Wiley: John Wiley New York · Zbl 0718.65001
[26] Hairer, E.; Norsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I (1993), Springer: Springer Berlin · Zbl 0789.65048
[27] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II (1996), Springer: Springer Berlin · Zbl 0859.65067
[28] Deuflhard, P., Newton Methods for Nonlinear Problems (2004), Springer: Springer Berlin · Zbl 1056.65051
[29] Lambert, J. D., Computational Methods in Ordinary Differential Equations (1973), Wiley: Wiley London · Zbl 0258.65069
[30] Jain, M. K., Numerical Solution of Differential Equations (1984), Wiley: Wiley New Delhi · Zbl 0536.65004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.