×

Sound propagation using an adjoint-based method. (English) Zbl 1460.76709

Summary: In this study, a comprehensive description of the adjoint formulation based on a systematic use of Lagrange’s identity is proposed to compute acoustic propagation effects induced by the presence of a mean flow. The adjoint method is a clever approach introduced by C. K. W. Tam and L. Auriault [ibid. 370, 149–174 (1998; Zbl 0929.76122)] in aeroacoustics to predict noise of distributed stochastic sources in a complex environment. A clear statement is also provided about the application of the flow reversal theorem, and its restriction to self-adjoint wave equations. As an illustration, sound propagation is computed numerically over a sheared and stratified mean flow for Lilley’s and Pierce’s wave equations. Acoustic solutions obtained with the adjoint approach are then compared with predictions obtained with the flow reversal theorem. Additionally Pierce’s wave equation for potential acoustics is identified as an outstanding candidate to compute accurately acoustic propagation while removing possible instability waves.

MSC:

76Q05 Hydro- and aero-acoustics

Keywords:

aeroacoustics

Citations:

Zbl 0929.76122

Software:

UMFPACK
Full Text: DOI

References:

[1] Afsar, M. Z.2009Solution of the parallel shear layer Green’s function using conservation equations. Intl J. Aeroacoust.8 (6), 585-602.
[2] Afsar, M. Z.2010Asymptotic properties of the overall sound pressure level of subsonic jet flows using isotropy as a paradigm. J. Fluid Mech.664, 510-539. · Zbl 1221.76178
[3] Afsar, M. Z., Dowling, A. P. & Karabasov, S. A.2006 Comparison of jet noise models. In 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, AIAA Paper 2006-2593.
[4] Afsar, M. Z., Dowling, A. P. & Karabasov, S. A.2007 Jet noise in the ‘zone of silence’. In 13th AIAA/CEAS Aeroacoustics Conference, Rome, AIAA Paper 2007-3606.
[5] Afsar, M. Z., Sescu, A. & Leib, S. J.2016a Predictive capability of low frequency jet noise using an asymptotic theory for the adjoint vector Green’s function in non-parallel flow. In 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, AIAA Paper 2016-2804.
[6] Afsar, M. Z., Sescu, A., Sassanis, V. & Lele, S. K.2017 Supersonic jet noise predictions using a unified asymptotic approximation for the adjoint vector Green’s function and LES data. In 23rd AIAA/CEAS Aeroacoustics Conference, Denver, CO, AIAA Paper 2017-3030.
[7] Afsar, M. Z., Sescu, A., Sassanis, V., Towne, A., Bres, G. A. & Lele, S. K.2016b Prediction of supersonic jet noise using non-parallel flow asymptotics and LES data within Goldstein’s acoustic analogy. In Proceedings of the Summer Program, Center for Turbulence Research, pp. 253-262.
[8] Alonso, J. S. & Burdisso, R. A.2007Green’s functions for the acoustic field in lined ducts with uniform flow. AIAA J.45 (11), 2677-2687.
[9] Bailly, C. & Bogey, C.2003 Radiation and refraction of sound waves through a two-dimensional shear layer. In Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems. NASA/CP2004-212954. Citeseer.
[10] Bailly, C., Bogey, C. & Candel, S.2010Modelling of sound generation by turbulent reacting flows. Intl J. Aeroacoust.9 (4-5), 461-489.
[11] Barone, M. F. & Lele, S. K.2005Receptivity of the compressible mixing layer. J. Fluid Mech.540, 301-335. · Zbl 1082.76044
[12] Berland, J., Bogey, C., Marsden, O. & Bailly, C.2007High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems. J. Comput. Phys.224 (2), 637-662. · Zbl 1120.65323
[13] Blokhintzev, D. I.1946The propagation of sound in an inhomogeneous and moving medium I. J. Acoust. Soc. Am.18 (2), 322-328.
[14] Bogey, C. & Bailly, C.2002Three-dimensional non-reflective boundary conditions for acoustic simulations: far field formulation and validation test cases. Acta Acoust. United with Acoust.88, 463-471.
[15] Bogey, C. & Bailly, C.2004A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys.194 (1), 194-214. · Zbl 1042.76044
[16] Bojarski, N. N.1983Generalized reaction principles and reciprocity theorems for the wave equations, and the relationship between the time-advanced and time-retarded fields. J. Acoust. Soc. Am.74 (1), 281-285. · Zbl 0559.73035
[17] Cheung, L. C., Pastouchenko, N. N., Mani, R. & Paliath, U.2015Fine-scale turbulent noise predictions from non-axisymmetric jets. Intl J. Aeroacoust.14 (3-4), 457-487.
[18] Cho, Y. C.1980Reciprocity principle in duct acoustics. J. Acoust. Soc. Am.67 (5), 1421-1426.
[19] Crighton, D. G. & Leppington, F. G.1970Scattering of aerodynamic noise by a semi-infinite compliant plate. J. Fluid Mech.43 (4), 721-736. · Zbl 0218.76088
[20] Crighton, D. G. & Leppington, F. G.1971On the scattering of aerodynamic noise. J. Fluid Mech.46 (3), 577-597. · Zbl 0224.76083
[21] Crighton, D. G. & Leppington, F. G.1973Singular perturbation methods in acoustics: diffraction by a plate of finite thickness. Proc. R. Soc. Lond. A335 (1602), 313-339. · Zbl 0314.76062
[22] Dahl, M. D.2004 Fourth CAA workshop on benchmark problems. Tech. Rep. 2004-212954. NASA.
[23] Davis, T. A.2004Algorithm 832: UMFPACK v4.3 an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. (TOMS)30 (2), 196-199. · Zbl 1072.65037
[24] Depuru Mohan, N. K., Dowling, A. P., Karabasov, S. A., Xia, H., Graham, O., Hynes, T. P. & Tucker, P. G.2015Acoustic sources and far-field noise of chevron and round jets. AIAA J.53 (9), 2421-2436.
[25] Dowling, A. P.1983Flow-acoustic interaction near a flexible wall. J. Fluid Mech.128, 181-198. · Zbl 0527.76079
[26] Dowling, A. P., Ffowcs Williams, J. E. & Goldstein, M. E.1978Sound production in a moving stream. Phil. Trans. R. Soc. Lond. A288 (1353), 321-349. · Zbl 0378.76055
[27] Eisler, T. J.1969 An introduction to Green’s functions. Tech. Rep. Catholic University of America Washington DC Institute of Ocean Science and Engineering.
[28] Eversman, W.1976A reciprocity relationship for transmission in non-uniform hard walled ducts without flow. J. Sound Vib.47 (4), 515-521. · Zbl 0355.76053
[29] Ewert, R. & Schröder, W.2003Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys.188 (2), 365-398. · Zbl 1022.76050
[30] Galbrun, H.1931Propagation d’une onde sonore dans l’atmosphère et théorie des zones de silence. Gauthier-Villars et Cie., Éditeurs, Libraires du Bureau des longitudes, de l’École polytechnique. · Zbl 0002.34002
[31] Giles, M. B. & Pierce, N. A.1997 Adjoint equations in CFD: duality, boundary conditions and solution behaviour. In 13th Computational Fluid Dynamics Conference, Snowmass Village, CO, AIAA Paper 1997-1850.
[32] Godin, O. A.1997Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid. Wave Motion25, 143-167. · Zbl 0930.76080
[33] Godin, O. A. & Voronovich, A. G.2004Fermat’s principle for non-dispersive waves in non-stationary media. Proc. R. Soc. Lond. A460 (2046), 1631-1647. · Zbl 1108.78004
[34] Goldstein, M. E.1978Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech.89 (3), 433-468. · Zbl 0401.76018
[35] Goldstein, M. E.2006Hybrid Reynolds-averaged Navier-Stokes/large eddy simulation approach for predicting jet noise. AIAA J.44 (12), 3136-3142.
[36] Goldstein, M. E. & Leib, S. J.2008The aeroacoustics of slowly diverging supersonic jets. J. Fluid Mech.600, 291-337. · Zbl 1151.76573
[37] Goldstein, M. E., Sescu, A. & Afsar, M. Z.2012Effect of non-parallel mean flow on the Green’s function for predicting the low-frequency sound from turbulent air jets. J. Fluid Mech.695, 199-234. · Zbl 1250.76149
[38] Gryazev, V., Markesteijn, A. P. & Karabasov, S. A.2018 Temperature effect on the apparent position of effective noise sources in a hot jet. In 24th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2018-2827.
[39] Helmholtz, H.1870Theorie der Luftschwingungen in Röhren mit offenen Enden. J. Reine Angew. Maths57, 1-72. · ERAM 057.1499cj
[40] Hill, D. C.1995Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech.292, 183-204. · Zbl 0866.76029
[41] Howe, M. S.1975The generation of sound by aerodynamic sources in an inhomogeneous steady flow. J. Fluid Mech.67 (3), 597-610. · Zbl 0297.76068
[42] Hu, F. Q.2008Development of PML absorbing boundary conditions for computational aeroacoustics: a progress review. Comput. Fluids37 (4), 336-348. · Zbl 1237.76119
[43] Jameson, A.1988Aerodynamic design via control theory. J. Sci. Comput.3 (3), 233-260. · Zbl 0676.76055
[44] Karabasov, S. A., Bogey, C. & Hynes, T. P.2013An investigation of the mechanisms of sound generation in initially laminar subsonic jets using the Goldstein acoustic analogy. J. Fluid Mech.714, 24-57. · Zbl 1284.76337
[45] Karabasov, S. A. & Hynes, T. P.2005 An efficient frequency-domain algorithm for wave scattering problems in application to jet noise. In 11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA, AIAA Paper 2005-2827.
[46] Karabasov, S. A. & Sandberg, R. D.2015Influence of free stream effects on jet noise generation and propagation within the Goldstein acoustic analogy approach for fully turbulent jet inflow boundary conditions. Intl J. Aeroacoust.14 (3-4), 413-429.
[47] Khavaran, A. & Bridges, J.2005Modelling of fine-scale turbulence mixing noise. J. Sound Vib.279 (3-5), 1131-1154.
[48] Lamb, G. L. Jr. 1995Introductory Applications of Partial Differential Equations: With Emphasis on Wave Propagation and Diffusion. John Wiley & Sons. · Zbl 0864.35004
[49] Landau, L. D. & Lifshitz, E. M.1959Course of Theoretical Physics, vol. 6. . Pergamon.
[50] Levine, H. & Schwinger, J.1948On the radiation of sound from an unflanged circular pipe. Phys. Rev.73 (4), 383-406. · Zbl 0039.21302
[51] Lilley, G. M., Plumblee, H. E., Strahle, W. C., Ruo, S. Y. & Doak, P. E.1972 The generation and radiation of supersonic jet noise. Volume IV. theory of turbulence generated jet noise, noise radiation from upstream sources, and combustion noise. Tech. Rep. Lockheed-Georgia Co. Marietta.
[52] Luchini, P. & Bottaro, A.1998Görtler vortices: a backward-in-time approach to the receptivity problem. J. Fluid Mech.363, 1-23. · Zbl 0926.76038
[53] Lyamshev, L. M.1961 On certain integral relations in the acoustics of a moving medium. In Doklady Akademii Nauk, vol. 138, pp. 575-578. Russian Academy of Sciences. · Zbl 0100.39202
[54] Maestrello, L., Bayliss, A. & Turkel, E.1981On the interaction of a sound pulse with the shear layer of an axisymmetric jet. J. Sound Vib.74 (2), 281-301. · Zbl 0452.76064
[55] Miller, S. A. E.2014aThe prediction of jet noise ground effects using an acoustic analogy and a tailored Green’s function. J. Sound Vib.333 (4), 1193-1207.
[56] Miller, S. A. E.2014bToward a comprehensive model of jet noise using an acoustic analogy. AIAA J.52 (10), 2143-2164.
[57] Morris, P. J. & Farassat, F.2002Acoustic analogy and alternative theories for jet noise prediction. AIAA J.40 (4), 671-680.
[58] Morse, P. M. & Feshbach, H.1953Methods of Theoretical Physics - Part I. McGraw-Hill. · Zbl 0051.40603
[59] Mosson, A., Binet, D. & Caprile, J.2014 Simulation of the installation effects of the aircraft engine rear fan noise with ACTRAN/DGM. In 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, AIAA Paper 2014-3188.
[60] Möhring, W.1978Acoustic energy flux in nonhomogeneous ducts. J. Acoust. Soc. Am.64 (4), 1186-1189. · Zbl 0385.76069
[61] Möhring, W.1979 Modelling low mach number noise. In IUTAM Symposium on Mechanics of Sound Generation in Flows, Göttingen, pp. 85-96. Springer.
[62] Möhring, W.1999 A well posed acoustic analogy based on a moving acoustic medium. In Aeroacoustic workshop SWING, Dresden, pp. 1-11.
[63] Möhring, W.2001Energy conservation, time-reversal invariance and reciprocity in ducts with flow. J. Fluid Mech.431, 223-237. · Zbl 0981.76084
[64] Pastouchenko, N. N. & Tam, C. K. W.2007Installation effects on the flow and noise of wing mounted jets. AIAA J.45 (12), 2851-2860.
[65] Phillips, O. M.1960On the generation of sound by supersonic turbulent shear layers. J. Fluid Mech.9 (1), 1-28. · Zbl 0097.41502
[66] Pierce, A. D.1990Wave equation for sound in fluids with unsteady inhomogeneous flow. J. Acoust. Soc. Am.87 (6), 2292-2299.
[67] Raizada, N. & Morris, P. J.2006 Prediction of noise from high speed subsonic jets using an acoustic analogy. In 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, AIAA Paper 2006-2596.
[68] Roberts, P. H.1960Characteristic value problems posed by differential equations arising in hydrodynamics and hydromagnetics. J. Math. Anal. Appl.1 (2), 195-214. · Zbl 0096.21002
[69] Semiletov, V. A. & Karabasov, S. A.2013 A 3D frequency-domain linearised Euler solver based on the Goldstein acoustic analogy equations for the study of nonuniform meanflow propagation effects. In 19th AIAA/CEAS Aeroacoustics Conference, Berlin, AIAA Paper 2013-2019.
[70] Stone, M. & Goldbart, P.2009Mathematics for Physics. Cambridge University Press. http://goldbart.gatech.edu/PG_MS_MfP.htm · Zbl 1173.00013
[71] Strutt, J. W.1877The Theory of Sound, 2nd ed. (1945), vol. 1. Dover.
[72] Tam, C. K. W. & Auriault, L.1998Mean flow refraction effects on sound radiated from localized source in a jet. J. Fluid Mech.370, 149-174. · Zbl 0929.76122
[73] Tam, C. K. W. & Auriault, L.1999Jet mixing noise from fine-scale turbulence. AIAA J.37 (2), 145-153.
[74] Tam, C. K. W. & Pastouchenko, N. N.2002Noise from fine-scale turbulence of nonaxisymmetric jets. AIAA J.40 (3), 456-464.
[75] Tam, C. K. W., Pastouchenko, N. N. & Viswanathan, K.2005Fine-scale turbulence noise from hot jets. AIAA J.43 (8), 1675-1683.
[76] Tam, C. K. W., Pastouchenko, N. N. & Viswanathan, K.2010 Continuation of near-acoustic fields of jets to the far field. Part I: Theory. In 16th AIAA/CEAS Aeroacoustics Conference, Stockholm, AIAA Paper 2010-3728.
[77] Tam, C. K. W. & Webb, J. C.1993Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys.107, 262-281. · Zbl 0790.76057
[78] Vasconcelos, I., Snieder, R. & Douma, H.2009Representation theorems and Green’s function retrieval for scattering in acoustic media. Phys. Rev. E80 (3), 036605.
[79] Wapenaar, C. P. A.1996Reciprocity theorems for two-way and one-way wave vectors: a comparison. J. Acoust. Soc. Am.100 (6), 3508-3518.
[80] Wei, M. & Freund, J. B.2006A noise-controlled free shear flow. J. Fluid Mech.546, 123-152. · Zbl 1222.76084
[81] Xu, X., He, J., Li, X. & Hu, F. Q.2015 3-D jet noise prediction for separate flow nozzles with pylon interaction. In 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, AIAA Paper 2015-512.
[82] Yates, J. E.1978 Application of the Bernoulli enthalpy concept to the study of vortex noise and jet impingement noise. Tech. Rep. NASA Contractor Report 2987.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.