×

Asymptotic properties of the overall sound pressure level of subsonic jet flows using isotropy as a paradigm. (English) Zbl 1221.76178

Summary: Measurements of subsonic air jets show that the peak noise usually occurs when observations are made at small angles to the jet axis. In this paper, we develop further understanding of the mathematical properties of this peak noise by analysing the properties of the overall sound pressure level with an acoustic analogy using isotropy as a paradigm for the turbulence. The analogy is based upon the hyperbolic conservation form of the Euler equations derived by M. E. Goldstein [“A unified approach to some recent developments in jet noise theory”, Int. J. Aeroacoust., 1, 1–16 (2002; doi:10.1260/1475472021502640)]. The mean flow and the turbulence properties are defined by a Reynolds-averaged Navier-Stokes calculation, and we use Green’s function based upon a parallel mean flow approximation. Our analysis in this paper shows that the jet noise spectrum can, in fact, be thought of as being composed of two terms, one that is significant at large observation angles and a second term that is especially dominant at small observation angles to the jet axis. This second term can account for the experimentally observed peak jet noise [P. A. Lush, J. Fluid Mech., 46, 477–500 (1971; doi:10.1017/S002211207100065X)] and was first identified by M. E. Goldstein [J. Fluid Mech. 70, 595–604 (1975; Zbl 0316.76049)]. We discuss the low-frequency asymptotic properties of this second term in order to understand its directional behaviour; we show, for example, that the sound power of this term is proportional to the square of the mean velocity gradient. We also show that this small-angle shear term does not exist if the instantaneous Reynolds stress source strength in the momentum equation itself is assumed to be isotropic for any value of time (as was done previously by P. J. Morris and F. Farrasat, AIAA J., 40, 671–680, (2002)]. However, it will be significant if the auto-covariance of the Reynolds stress source, when integrated over the vector separation, is taken to be isotropic in all of its tensor suffixes. Although the analysis shows that the sound pressure of this small-angle shear term is sensitive to the statistical properties of the turbulence, this work provides a foundation for a mathematical description of the two-source model of jet noise.

MSC:

76Q05 Hydro- and aero-acoustics
76G25 General aerodynamics and subsonic flows

Citations:

Zbl 0316.76049
Full Text: DOI

References:

[1] DOI: 10.1098/rspa.1952.0060 · Zbl 0049.25905 · doi:10.1098/rspa.1952.0060
[2] Lilley, ARC-20, 376, No. 40, Fm-2724 (1958)
[3] DOI: 10.1017/S002211207100243X · doi:10.1017/S002211207100243X
[4] DOI: 10.2514/1.44689 · doi:10.2514/1.44689
[5] Batchelor, The Theory of Homegenous Turbulence (1953)
[6] DOI: 10.1017/S0022112077000020 · doi:10.1017/S0022112077000020
[7] DOI: 10.1017/S0022112008000311 · Zbl 1151.76573 · doi:10.1017/S0022112008000311
[8] DOI: 10.1098/rspa.1978.0053 · doi:10.1098/rspa.1978.0053
[9] DOI: 10.1017/S0022112004002551 · Zbl 1065.76177 · doi:10.1017/S0022112004002551
[10] Wu, 11th AIAA/CEAS Aero-Acoustics Conference (2005)
[11] DOI: 10.1016/S0022-460X(73)80132-4 · doi:10.1016/S0022-460X(73)80132-4
[12] DOI: 10.2514/1.9060 · doi:10.2514/1.9060
[13] DOI: 10.1017/S0022112009990577 · Zbl 1183.76866 · doi:10.1017/S0022112009990577
[14] Afsar, International Congress of Mathematicians (2010)
[15] DOI: 10.1017/S0022112003004890 · Zbl 1063.76630 · doi:10.1017/S0022112003004890
[16] DOI: 10.1146/annurev.fluid.38.050304.092036 · Zbl 1100.76058 · doi:10.1146/annurev.fluid.38.050304.092036
[17] DOI: 10.1260/147547209789141506 · doi:10.1260/147547209789141506
[18] DOI: 10.1260/1475472021502640 · doi:10.1260/1475472021502640
[19] DOI: 10.1017/S0022112008003704 · Zbl 1175.76026 · doi:10.1017/S0022112008003704
[20] DOI: 10.1146/annurev.fl.16.010184.001403 · doi:10.1146/annurev.fl.16.010184.001403
[21] DOI: 10.1017/S0022112084000124 · Zbl 0543.76109 · doi:10.1017/S0022112084000124
[22] DOI: 10.2514/2.691 · doi:10.2514/2.691
[23] DOI: 10.1016/0022-460X(82)90495-3 · Zbl 0507.76077 · doi:10.1016/0022-460X(82)90495-3
[24] Goldstein, Aero-Acoustics (1976)
[25] DOI: 10.1017/S0022112098001852 · Zbl 0929.76122 · doi:10.1017/S0022112098001852
[26] DOI: 10.1017/S0022112075002212 · Zbl 0316.76049 · doi:10.1017/S0022112075002212
[27] DOI: 10.1146/annurev.fl.27.010195.000313 · doi:10.1146/annurev.fl.27.010195.000313
[28] DOI: 10.1063/1.1569919 · Zbl 1186.76178 · doi:10.1063/1.1569919
[29] DOI: 10.1017/S0022112071000831 · Zbl 0226.76032 · doi:10.1017/S0022112071000831
[30] DOI: 10.1017/S0022112001004414 · Zbl 1013.76075 · doi:10.1017/S0022112001004414
[31] DOI: 10.1016/0022-460X(80)90650-1 · doi:10.1016/0022-460X(80)90650-1
[32] DOI: 10.1017/S0022112078000415 · doi:10.1017/S0022112078000415
[33] Shur, West East High Speed Flow Conference (2007)
[34] Feynman, The Feynman Lectures on Physics: Volume 1 (1964) · Zbl 0138.43403
[35] DOI: 10.1017/S0022112069000012 · Zbl 0179.56606 · doi:10.1017/S0022112069000012
[36] Dowling, Proc. R. Soc. A 288 pp 321– (1978)
[37] Power, 10th AIAA/CEAS Aero-Acoustics Conference (2004)
[38] Nayfeh, Perturbation Methods (1972)
[39] Crow, Stud. Appl. Math. 49 pp 21– (1970) · Zbl 0185.54701 · doi:10.1002/sapm197049121
[40] DOI: 10.1115/1.2801374 · doi:10.1115/1.2801374
[41] Morse, Methods of Theoretical Physics, Part I (1953) · Zbl 0051.40603
[42] Crighton, Modern Methods in Analytical Acoustics (1992) · doi:10.1007/978-1-4471-0399-8
[43] Crighton, Computational Aero-Acoustics pp 50– (1993) · doi:10.1007/978-1-4613-8342-0_3
[44] DOI: 10.2514/2.1699 · doi:10.2514/2.1699
[45] DOI: 10.1017/S0305004100044583 · doi:10.1017/S0305004100044583
[46] DOI: 10.1260/147547209787548921 · doi:10.1260/147547209787548921
[47] DOI: 10.1017/S0022112096003928 · Zbl 0901.76075 · doi:10.1017/S0022112096003928
[48] Morris, ERCOTAF Symposium on Sound Source Mechanisms in Turbulent Shear Flow (2008)
[49] DOI: 10.1016/j.paerosci.2004.09.001 · doi:10.1016/j.paerosci.2004.09.001
[50] Moore, 13th AIAA/CEAS Aero-Acoustics Conference (2007)
[51] DOI: 10.2514/2.966 · doi:10.2514/2.966
[52] DOI: 10.1017/S0022112064000209 · Zbl 0113.42102 · doi:10.1017/S0022112064000209
[53] DOI: 10.1017/S0022112008004096 · Zbl 1163.76046 · doi:10.1017/S0022112008004096
[54] DOI: 10.1017/S002211207100065X · doi:10.1017/S002211207100065X
[55] Bodony, 12th AIAA/CEAS Conference (2005)
[56] DOI: 10.1098/rspa.1976.0172 · doi:10.1098/rspa.1976.0172
[57] Bodony, 47th Aerospace Sciences Meeting (2009)
[58] Liu, Proc. R. Soc. Lond. A 311 pp 183– (1984)
[59] Lebedev, Special Functions and Their Applications (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.