×

On the Poisson relation for compact Lie groups. (English) Zbl 1455.58012

Let \((M,g)\) be a closed Riemannian manifold. Its Laplace-Beltrami spectrum \(\mathrm{Spec}_\Lambda(g)\) is the set of eigenvalues (counted with multiplicity) of the Laplace-Beltrami operator \(\Delta_g\), its length spectrum \(\mathrm{Spec}_L(g)\) is the set of lengths of the closed geodesics (or the periods of its geodesic flow \((\Phi_t)_{t\ge0}\) on the unitary cotangent space, also counted with multiplicity). These two spectra are related by the so called Poisson relation: the singular support of the distributional trace \(\mathrm{Tr}\left(e^{it\sqrt{\Delta_g}}\right)\) on \(\mathbb{R}_t\) is included in the symmetric length spectrum \(\pm\mathrm{Spec}_L(g)\) [J. J. Duistermaat and V. W. Guillemin, Invent. Math. 29, 39–79 (1975; Zbl 0307.35071)], see also [Y. Colin de Verdiere, Ann. Inst. Fourier 57, No. 7, 2429–2463 (2007; Zbl 1142.35057)]). The problem of the equality of these two spectra is at the heart of this paper, often formulated as the length spectrum \(\mathrm{Spec}_L(g)\) determination by the spectral spectrum \(\mathrm{Spec}_\Lambda(g)\).
Examples of Riemannian spaces with the equality are given by the compact rank-one symmetric spaces (i.e. \(\mathbb{S}^n\), \(\mathbb{R}P^n\), \(\mathbb{C}P^n\), \(\mathbb{R}H^n\) and \(\mathbb{C}a^2\)), the similar case of Zoll manifolds and, at opposite, by bumpy metrics (which may have a simple length spectrum). This paper gives a large collection of other examples, built in the framework of compact Lie groups and homogenous spaces.
The analysis of the distribution \(\mathrm{Tr}\left(e^{it\sqrt{\Delta_g}}\right)\) singularities is done by Duistermaat-Guillemin under a clean hypothesis: a manifold \(M\) is said to be clean if each period \(\tau\) of its geodesic flow \(\Phi_t\) is clean, meaning that the fixed point set \(\mathrm{Fix}(\Phi_\tau)\) is a union of finitely many closed submanifolds \(Z_1,\dots,Z_r\) such that for each \(u\in Z_j\) the fixed point set \(\mathrm{Fix}(T_u\Phi_\tau)\) is equal to the tangent space \(T_uZ_j\).
The first important result asserts that any compact globally symmetric space is clean. However, the example of the (unclean) Berger metrics on \(\mathrm{SO}(3)\) or \(\mathrm{SU}(2)\) indicates the existence of unclean homogenous spaces.
To look at the spectra of a compact symmetric space \((M=G/K,g)\), the author recalls its structure as detailed by O. Loos [Symmetric spaces. I: General theory. II: Compact spaces and classification. New York-Amsterdam: W. A. Benjamin, Inc. (1969; Zbl 0175.48601)]. There are two types of irreducible symmetric spaces, while in general, such a compact symmetric space \((M,g)\) is of the form \(M=\Gamma\backslash(M_0\times M_1\times\dots \times M_q)\) with metric \(g\) induced by the metric \(G(g_0,c_1,\ldots,c_q)=g_0\times c_1g_1\times\ldots\times c_qg_q\) on the cover \(M_0\times M_1\times\ldots \times M_q\) where \(M_0\) is a compact torus with flat metric \(g_0\) and the other factors \(M_j,j=1,\dots,q\) are simply connected compact irreducible symmetric spaces with metric \(g_j\) induced from the Killing form and real positive constants \(c_j,j=1,\dots,q\); the space \(\Gamma\) is a discrete subgroup of the center of \(M_0\times M_1\times\ldots \times M_q\). Let \(\mathcal{R}_{\mathrm{sym}}(M)=\mathcal{S}^+(\mathrm{dim}M_0)\times \mathbb{R}_+^q\) be the space of symmetric metrics on \(M\) with \(\mathcal{S}^+(d)\) the space of positive real symmetric matrices of order \(d\).
The main result of the paper states the existence of a residual set in \(\mathcal{R}_{\mathrm{sym}}(M)\) such that the compact symmetric space \((M,G(g_0,c_1,\dots,c_q))\) obeys the Poisson relation equality. Moreover the author gives a list of spaces for which the Poisson relation equality holds for any parameter \((g_0,c_1,\dots,c_q)\in\mathcal{R}_{\mathrm{sym}}(M)\), this list containing irreducible \(M\). As corollary, similar results are valid for compact spaces with bi-invariant metrics.
The proof strategy relies on the wave invariants \((\mathrm{Wave}_k(\tau))_{k\in\mathbb{N}}\), which appear in the singularity expansion of the wave trace in the neighborhood of each geodesic period and which has been calculated by Duistermaat-Guillemin for clean manifolds. The classification of symmetric spaces and the structure of their root systems are heavily used to handle this calculations.

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
53C20 Global Riemannian geometry, including pinching
53C30 Differential geometry of homogeneous manifolds
53C35 Differential geometry of symmetric spaces
53C22 Geodesics in global differential geometry

References:

[1] Abraham, R.: Bumpy metrics. In: Global Analysis (Proceedings of Symposia in Pure Mathematics, Vol. XIV, Berkeley, California, 1968), pp. 1-3. American Mathematical Society, Providence, RI (1970) · Zbl 0215.23301
[2] Adams, JF, Lectures on Exceptional Lie Groups (1996), Chicago: The University of Chicago Press, Chicago · Zbl 0866.22008
[3] Anosov, DV, Generic properties of closed geodesics, Math. USSR Izvestiya, 21, 1-29 (1983) · Zbl 0554.58043 · doi:10.1070/IM1983v021n01ABEH001637
[4] Ballmann, W.; Thorbergsson, G.; Ziller, W., Closed geodesics on positively curved manifolds, Ann. Math., 116, 213-247 (1982) · Zbl 0495.58010 · doi:10.2307/2007062
[5] Besse, AL, Manifolds all of Whose Geodesics are Closed (1978), Berlin: Springer, Berlin · Zbl 0387.53010
[6] Besse, AL, Einstein Manifolds (1987), Berlin: Springer, Berlin · Zbl 0613.53001
[7] Bröcker, T.; tom Dieck, T., Representations of Compact Lie Groups (1985), Berlin: Springer, Berlin · Zbl 0581.22009
[8] Brown, N.; Fink, R.; Spencer, M.; Tapp, K.; Wu, Z., Invariant metrics with nonnegative curvature on compact Lie groups, Can. Math. Bull., 50, 24-34 (2007) · Zbl 1132.53016 · doi:10.4153/CMB-2007-003-7
[9] Brummelhuis, R.; Paul, T.; Uribe, A., Spectral estimates around a critical level, Duke Math. J., 78, 477-530 (1995) · Zbl 0849.58067 · doi:10.1215/S0012-7094-95-07823-5
[10] Chazarain, J., Formule de Poisson pour les variétés riemanniennes, Invent. Math., 24, 65-82 (1974) · Zbl 0281.35028 · doi:10.1007/BF01418788
[11] Cianci, D.: On the Poisson Relation for Lens Spaces. Thesis Ph.D. Dartmouth College (2016)
[12] Colin de Verdière, Y., Spectre du laplacien et longueurs des géodésiques périodiques II, Compos. Math., 27, 159-184 (1973) · Zbl 0281.53036
[13] D’Atri, JE; Ziller, W., Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Am. Math. Soc., 18, 215, iii + 72 (1979) · Zbl 0404.53044
[14] Duistermaat, JJ; Guillemin, V., The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29, 39-79 (1975) · Zbl 0307.35071 · doi:10.1007/BF01405172
[15] Duistermaat, JJ; Kolk, JAC; Varadarajan, VS, Spectra of compact locally symmetric manifolds of nonnegative curvature, Invent. Math., 52, 27-93 (1979) · Zbl 0434.58019 · doi:10.1007/BF01389856
[16] Gangolli, R., The length spectra of some compact manifolds of negative curvature, J. Differ. Geom., 12, 403-424 (1977) · Zbl 0365.53016 · doi:10.4310/jdg/1214434092
[17] Gordon, CS; Mao, Y., Comparisons of Laplace spectra, length spectra and geodesic flows of some Riemannian manifolds, Math. Res. Lett., 1, 677-688 (1994) · Zbl 0837.58035 · doi:10.4310/MRL.1994.v1.n6.a5
[18] Gordon, CS; Sutton, CJ, Spectral isolation of naturally reductive metrics on simple Lie groups, Math. Z., 266, 979-995 (2010) · Zbl 1201.53060 · doi:10.1007/s00209-009-0640-6
[19] Gornet, R., Riemannian nilmanifolds and the trace formula, Trans. Am. Math. Soc., 35711, 4445-4479 (2005) · Zbl 1078.58020 · doi:10.1090/S0002-9947-05-03965-6
[20] Guillemin, V., Some spectral results on rank one symmetric spaces, Adv. Math., 28, 129-137 (1978) · Zbl 0441.58012 · doi:10.1016/0001-8708(78)90059-2
[21] Helgason, S., Differential Geometry, Lie Groups, Symmetric Spaces (1978), San Diego: Academic Press, San Diego · Zbl 0177.50601
[22] Huber, H., Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen I, Math. Ann., 138, 1-26 (1959) · Zbl 0089.06101 · doi:10.1007/BF01369663
[23] Huber, H., Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen II, Math. Ann., 143, 463-464 (1961) · Zbl 0101.05702 · doi:10.1007/BF01470758
[24] Humphreys, J., Introduction to Lie Algebras and Representation Theory (1994), New York: Springer, New York · Zbl 0254.17004
[25] Lin, S., Schmidt, B., Sutton, C.: Geometric structures and the Laplace spectrum, Part II. arXiv:1910.14118 [math.DG] (Preprint)
[26] Loos, O., Symmetric Spaces II: Compact Spaces and Classification (1969), New York: W.A. Benjamin Inc., New York · Zbl 0175.48601
[27] McKean, HP, Selberg’s trace formula as applied to a compact Riemann surface, Commun. Pure Appl. Math., 25, 225-246 (1972) · Zbl 0225.30021 · doi:10.1002/cpa.3160250302
[28] Miatello, RJ; Rossetti, JP, Length spectra and \(p\)-spectra of compact flat manifolds, J. Geom. Anal., 13, 631-657 (2003) · Zbl 1060.58021 · doi:10.1007/BF02921882
[29] Pesce, H., Une formule de Poisson pour les variétés Heisenberg, Duke Math. J., 73, 79-95 (1994) · Zbl 0803.58054 · doi:10.1215/S0012-7094-94-07303-1
[30] Prasad, G.; Rapinchuk, AS, Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. Math. Inst. Hautes Études Sci. No., 109, 113-184 (2009) · Zbl 1176.22011 · doi:10.1007/s10240-009-0019-6
[31] Prüfer, F., On the spectrum and the geometry of a spherical space form I, Ann. Glob. Anal. Geom., 3, 2, 129-154 (1985) · Zbl 0547.58040 · doi:10.1007/BF01000336
[32] Prüfer, F., On the spectrum and the geometry of a spherical space form II, Ann. Glob. Anal. Geom., 3, 3, 289-312 (1985) · Zbl 0556.58028 · doi:10.1007/BF00130482
[33] Sakai, T., Riemannian Geometry, Translations of Mathematical Monographs (1996), Providence: American Mathematical Society, Providence · Zbl 0886.53002
[34] Samelson, H., Notes on Lie Algebras (1990), New York: Spring, New York · Zbl 0708.17005
[35] Schmidt, B., Sutton, C.: Detecting the moments of inertia of a molecule via its rotational spectrum, Part II. Unpublished (2014). https://math.dartmouth.edu/ cjsutton
[36] Sunada, T., Riemannian coverings and isospectral manifolds, Ann. Math., 121, 169-186 (1985) · Zbl 0585.58047 · doi:10.2307/1971195
[37] Sutton, C.: Detecting the moments of inertia of a molecule via its rotational spectrum, Part I. Unpublished (2013). https://math.dartmouth.edu/ cjsutton
[38] Wilking, B., Index parity of closed geodesics, Invent. Math., 144, 281-295 (2001) · Zbl 1028.53044 · doi:10.1007/PL00005801
[39] Wolf, J., Spaces of Constant Curvature (2011), Providence, RI: AMS Chelsea Publishing, Providence, RI · Zbl 1216.53003
[40] Zelditch, S., The inverse spectral problem, Surv. Differ. Geom., 9, 401-467 (2004) · Zbl 1061.58029 · doi:10.4310/SDG.2004.v9.n1.a12
[41] Ziller, W., Closed geodesics on homogeneous spaces, Math. Z., 152, 67-88 (1976) · Zbl 0326.53054 · doi:10.1007/BF01214223
[42] Ziller, W., The Jacobi equation on naturally reductive compact Remannian homogeneous spaces, Comment. Math. Helv., 52, 573-590 (1977) · Zbl 0368.53033 · doi:10.1007/BF02567391
[43] Ziller, W., The free loop space of a globally symmetric space, Invent. Math., 41, 1-22 (1977) · Zbl 0338.58007 · doi:10.1007/BF01390161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.