×

Spectral estimates around a critical level. (English) Zbl 0849.58067

Let be given a Schrödinger operator \(A_\hbar = - \hbar^2 \Delta + V\) with \(\Delta\) the Laplace-Beltrami operator associated with a Riemannian metric on a compact manifold \(M\), and \(V \in C^\infty (M)\) is strictly positive. \(A_\hbar\) then has a discrete spectrum, consisting of eigenvalues \(\{E_j (\hbar)\}\) with finite multiplicities, and the trace formula states that, under certain assumptions, the sums \[ \Upsilon_{\hbar, E} (\varphi) = \sum_j \varphi \left( {E_j (\hbar) - E \over \hbar} \right), \tag{1} \] where \(\varphi\) is a test function with compactly supported Fourier transform, have an asymptotic expansion in integer powers of \(\hbar\) as \(\hbar \to 0\), and the leading coefficients of these expansion are computed. The behavior of (1) in case there are equilibria with energy \(E\) is studied.

MSC:

58J40 Pseudodifferential and Fourier integral operators on manifolds
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
35P20 Asymptotic distributions of eigenvalues in context of PDEs
Full Text: DOI

References:

[1] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. I , Monographs in Mathematics, vol. 82, Birkhäuser Boston Inc., Boston, MA, 1985. · Zbl 0554.58001
[2] J. Brüning and R. Seeley, Regular singular asymptotics , Adv. in Math. 58 (1985), no. 2, 133-148. · Zbl 0593.47047 · doi:10.1016/0001-8708(85)90114-8
[3] R. Brummelhuis and A. Uribe, A semi-classical trace formula for Schrödinger operators , Comm. Math. Phys. 136 (1991), no. 3, 567-584. · Zbl 0729.35093 · doi:10.1007/BF02099074
[4] C. J. Callias and G. A. Uhlmann, Singular asymptotics approach to partial differential equations with isolated singularities in the coefficients , Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 172-176. · Zbl 0568.35074 · doi:10.1090/S0273-0979-1984-15255-8
[5] Y. Colin De Verdière, Ergodicité et fonctions propres du laplacien , Comm. Math. Phys. 102 (1985), no. 3, 497-502. · Zbl 0592.58050 · doi:10.1007/BF01209296
[6] Y. Colin de Verdière and B. Parisse, Équilibre instable en régime semi-classique I: Concentration microlocale , preprint, 1993. · Zbl 0880.34084 · doi:10.1080/03605309408821063
[7] P. Duclos and H. Hogreve, On the semiclassical localization of the quantum probability , J. Math. Phys. 34 (1993), no. 5, 1681-1691. · Zbl 0773.60094 · doi:10.1063/1.530408
[8] J. Duistermaat, Fourier integral operators , Courant Institute of Mathematical Sciences New York University, New York, 1973. · Zbl 0272.47028
[9] J. J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics , Invent. Math. 29 (1975), no. 1, 39-79. · Zbl 0307.35071 · doi:10.1007/BF01405172
[10] B. Helffer, A. Martinez, and D. Robert, Ergodicité et limite semi-classique , Comm. Math. Phys. 109 (1987), no. 2, 313-326. · Zbl 0624.58039 · doi:10.1007/BF01215225
[11] V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols , Duke Math. J. 48 (1981), no. 1, 251-267. · Zbl 0462.58030 · doi:10.1215/S0012-7094-81-04814-6
[12] V. Guillemin and A. Uribe, Circular symmetry and the trace formula , Invent. Math. 96 (1989), no. 2, 385-423. · Zbl 0686.58040 · doi:10.1007/BF01393968
[13] S. Jones, Generalised functions , McGraw-Hill Book Co., New York, 1966. · Zbl 0149.09403
[14] L. Hörmander, The analysis of linear partial differential operators. I , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. · Zbl 0521.35001
[15] L. Hörmander, The analysis of linear partial differential operators. III , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. · Zbl 0601.35001
[16] L. Hörmander, The analysis of linear partial differential operators. IV , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985. · Zbl 0612.35001
[17] B. Malgrange, Intégrales asymptotiques et monodromie , Ann. Sci. École Norm. Sup. (4) 7 (1974), 405-430 (1975). · Zbl 0305.32008
[18] R. B. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy problem , Comm. Pure Appl. Math. 32 (1979), no. 4, 483-519. · Zbl 0396.58006 · doi:10.1002/cpa.3160320403
[19] T. Paul and A. Uribe, Sur la formule semi-classique des traces , C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 5, 217-222. · Zbl 0738.58046
[20] T. Paul and A. Uribe, The semi-classical trace formula and propagation of wave packets , to appear in J. Funct. Analysis. · Zbl 0837.35106 · doi:10.1006/jfan.1995.1105
[21] T. Paul and A. Uribe, Periodic orbits and quantum mechanics , From Classical to Quantum Chaos eds. G. F. Dell’Antonio, S. Fantoni and V. R. Manfredi, Società Italiana di Fisica, Bologna, 1993.
[22] D. Robert, Autour de l’approximation semi-classique , Progress in Mathematics, vol. 68, Birkhäuser Boston Inc., Boston, MA, 1987. · Zbl 0621.35001
[23] A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature , Math. Scand. 8 (1960), 201-218. · Zbl 0104.33402
[24] A. Šnirelman, Ergodic properties of eigenfunctions , Uspehi Mat. Nauk 29 (1974), no. 6(180), 181-182. · Zbl 0324.58020
[25] A. N. Varchenko, Newton polyhedra and estimation of oscillatory integrals , Funct. Anal. Appl. 10 (1976), 175-196. · Zbl 0351.32011 · doi:10.1007/BF01075524
[26] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces , Duke Math. J. 55 (1987), no. 4, 919-941. · Zbl 0643.58029 · doi:10.1215/S0012-7094-87-05546-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.