×

String cohomology groups of complex projective spaces. (English) Zbl 1134.55005

Let \(LX\) denote the free loop space on \(X := \mathbb C P^r\) (some fixed \(r\geq 1\)). Consider the space of homotopy orbits \(LX_{hS^1}:= ES^1\times_{S^1} LX\) under the canonical action of \(S^1\) on \(LX\). The purpose of this paper is to compute the equivariant singular cohomology with coefficients in the prime field \(\mathbb F_p\), \(H^*(LX_{hS^1};\mathbb F_p)\), as a module over \(H^*(BS^1;\mathbb F_p)) = \mathbb F_p[u]\). The computation uses a mixture of Morse theory and homotopy theory and does not use the fact that \(X\) is \(\mathbb F_p\)-formal and negative cyclic homology. Therefore the authors’ method extends for computations in topological \(K\)-theory or could be useful when working with non-formal manifolds. This method consists of a clever analysis of the space of geodesics on \(\mathbb CP^r\) equipped with the Fubini-Study metric and of a skillful study of the spectral sequence induced by the energy filtration.

MSC:

55N91 Equivariant homology and cohomology in algebraic topology
55P35 Loop spaces
18G50 Nonabelian homological algebra (category-theoretic aspects)

References:

[1] L Astey, S Gitler, E Micha, G Pastor, Cohomology of complex projective Stiefel manifolds, Canad. J. Math. 51 (1999) 897 · Zbl 0938.55007 · doi:10.4153/CJM-1999-039-2
[2] J M Boardman, Conditionally convergent spectral sequences, Contemp. Math. 239, Amer. Math. Soc. (1999) 49 · Zbl 0947.55020
[3] M Bökstedt, I Ottosen, Homotopy orbits of free loop spaces, Fund. Math. 162 (1999) 251 · Zbl 0952.55006
[4] M Bökstedt, I Ottosen, The suspended free loop space of a symmetric space, preprint, Aarhus University, (2004) · Zbl 1108.55006
[5] M Bökstedt, I Ottosen, A spectral sequence for string cohomology, Topology 44 (2005) 1181 · Zbl 1078.55008 · doi:10.1016/j.top.2005.04.006
[6] M Bökstedt, I Ottosen, A splitting result for the free loop space of spheres and projective spaces, Q. J. Math. 56 (2005) 443 · Zbl 1108.55006 · doi:10.1093/qmath/hah056
[7] A Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. \((2)\) 57 (1953) 115 · Zbl 0052.40001 · doi:10.2307/1969728
[8] M Chas, D Sullivan, String topology, Ann. of Math. \((2)\) (to appear) · Zbl 1185.55013 · doi:10.1007/978-3-642-01200-6_2
[9] R L Cohen, J D S Jones, J Yan, The loop homology algebra of spheres and projective spaces, Progr. Math. 215, Birkhäuser (2004) 77 · Zbl 1054.55006
[10] M El Haouari, \(p\)-formalité des espaces, J. Pure Appl. Algebra 78 (1992) 27 · Zbl 0744.55007 · doi:10.1016/0022-4049(92)90017-A
[11] S Gallot, D Hulin, J Lafontaine, Riemannian geometry, Universitext, Springer (1990) · Zbl 0636.53001
[12] D Gromoll, W Meyer, Periodic geodesics on compact riemannian manifolds, J. Differential Geometry 3 (1969) 493 · Zbl 0203.54401
[13] D Husemoller, Fibre bundles, Graduate Texts in Mathematics 20, Springer (1994) · Zbl 0202.22903
[14] J D S Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987) 403 · Zbl 0644.55005 · doi:10.1007/BF01389424
[15] P Klein, Über die Kohomologie des freien Schleifenraums, Mathematische Institut der Universität Bonn, Bonn (1972) · Zbl 0248.55011
[16] W Klingenberg, The space of closed curves on the sphere, Topology 7 (1968) 395 · Zbl 0174.55102 · doi:10.1016/0040-9383(68)90015-3
[17] W Klingenberg, The space of closed curves on a projective space, Quart. J. Math. Oxford Ser. \((2)\) 20 (1969) 11 · Zbl 0177.26202 · doi:10.1093/qmath/20.1.11
[18] W Klingenberg, Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften 230, Springer (1978) · Zbl 0397.58018
[19] J L Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften 301, Springer (1992) · Zbl 0780.18009
[20] S Macnbsp;Lane, Homology, Classics in Mathematics, Springer (1995)
[21] I Madsen, C Schlichtkrull, The circle transfer and \(K\)-theory, Contemp. Math. 258, Amer. Math. Soc. (2000) 307 · Zbl 0991.55002
[22] I Madsen, J Tornehave, From calculus to cohomology, Cambridge University Press (1997) · Zbl 0884.57001
[23] B M Mann, E Y Miller, H R Miller, \(S^1\)-equivariant function spaces and characteristic classes, Trans. Amer. Math. Soc. 295 (1986) 233 · Zbl 0597.55010 · doi:10.2307/2000155
[24] J McCleary, Homotopy theory and closed geodesics, Lecture Notes in Math. 1418, Springer (1990) 86 · Zbl 0694.55010
[25] L Menichi, The cohomology ring of free loop spaces, Homology Homotopy Appl. 3 (2001) 193 · Zbl 0974.55005 · doi:10.4310/HHA.2001.v3.n1.a9
[26] J W Milnor, J D Stasheff, Characteristic classes, Annals of Mathematics Studies 76, Princeton University Press (1974) · Zbl 0298.57008
[27] B Ndombol, J C Thomas, On the cohomology algebra of free loop spaces, Topology 41 (2002) 85 · Zbl 1011.16008 · doi:10.1016/S0040-9383(00)00022-7
[28] I Ottosen, On the Borel cohomology of free loop spaces, Math. Scand. 93 (2003) 185 · Zbl 1064.55003
[29] E H Spanier, Algebraic topology, McGraw-Hill Book Co. (1966) · Zbl 0145.43303
[30] T tom Dieck, Transformation groups, de Gruyter Studies in Mathematics 8, Walter de Gruyter & Co. (1987) · Zbl 0611.57002
[31] M Vigué-Poirrier, D Sullivan, The homology theory of the closed geodesic problem, J. Differential Geometry 11 (1976) 633 · Zbl 0361.53058
[32] A S \vSvarc, The homologies of spaces of closed curves, Trudy Moskov. Mat. Ob\vs\vc. 9 (1960) 3
[33] G W Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer (1978) · Zbl 0406.55001
[34] W Ziller, The free loop space of globally symmetric spaces, Invent. Math. 41 (1977) 1 · Zbl 0338.58007 · doi:10.1007/BF01390161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.