×

Heat transfer enhancement in suspensions of agitated solids. III. Thermophoretic transport of nanoparticles in the diffusion limit. (English) Zbl 1154.80333

Summary: We illustrate the diffusion limit of wall heat transfer in fluid-solid suspensions by considering small colloidal particles dilute in a liquid at rest. Because such particles are agitated by Brownian motion, their self-diffusivity is modest, the fluid and solid phases share the same temperature, and mixture theory should predict the effective suspension conductivity. We show how thermophoresis creates suspension inhomogeneities, suggest ways to mitigate the latter with ultrasonic forcing, and examine consequences on heat transfer. To inform a debate on nanofluids heat transfer, we show that anomalous conductivity enhancements reported with hot-wire thermal conductimetry can be an experimental artifact of thermophoretic migration along the temperature gradient or timing in the observations.
For part I,II, cf. ibid. 5108–5118 (2008; Zbl 1154.80315); 5119–5129 (2008; Zbl 1154.80316).

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76T20 Suspensions
60J65 Brownian motion
Full Text: DOI

References:

[1] Chen, X.; Louge, M.: Heat transfer enhancement in suspensions of agitated solids – part I: Theory – part II: Experiments in the exchange limit, Int. J. Heat mass transfer 51, 5119-5129 (2008) · Zbl 1154.80316 · doi:10.1016/j.ijheatmasstransfer.2008.04.064
[2] Wang, X. -Q.; Mujumdar, A. S.: Heat transfer characteristics of nanofluids: a review, Int. J. Thermal sci. 46, 1-19 (2007)
[3] Eastman, J. A.; Phillpot, S. R.; Choi, S. U. S.; Keblinski, P.: Thermal transport in nanofluids, Annu. rev. Mater. res. 34, 219-246 (2004) · Zbl 1111.76333
[4] Maxwell, J. C.: Electricity and magnetism, (1873) · JFM 05.0556.01
[5] Keblinski, P.; Eastman, J. A.; Cahill, D. G.: Nanofluids for thermal transport, Mater. today, No. June, 36-44 (2005)
[6] Eastman, J. A.; Choi, S. U. S.; Li, S.; Yu, W.; Thompson, L. J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. phys. Lett. 78, 718-720 (2001)
[7] Keblinski, P.; Phillpot, S. R.; Choi, S. U. S.; Eastman, J. A.: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat mass transfer 45, 855-863 (2002) · Zbl 1017.76094 · doi:10.1016/S0017-9310(01)00175-2
[8] Evans, W.; Fish, J.; Keblinski, P.: Role of Brownian motion hydrodynamics on nanofluid thermal conductivity, Appl. phys. Lett. 88, 093116 (2006)
[9] Jang, S. P.; Choi, S. U. S.: Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. phys. Lett. 84, 4316-4318 (2004)
[10] Prasher, R.; Bhattacharya, P.; Phelan, P. E.: Thermal conductivity of nanoscale colloidal solutions (nanofluids), Phys. rev. Lett. 94, 025901 (2005)
[11] Hong, K. S.; Hong, T. -K.; Yang, H. -S.: Thermal conductivity of fe nanofluids depending on the cluster size of nanoparticles, Appl. phys. Lett. 88, 031901 (2006)
[12] Hong, T. -K.; Yang, H. -S.: Nanoparticle-dispersion-dependent thermal conductivity in nanofluids, J. korean phys. Soc. 47, S321-S324 (2005)
[13] Prasher, R.; Evans, W.; Meakin, P.; Fish, J.; Phelan, P.; Keblinski, P.: Effect of aggregation on thermal conduction in colloidal nanofluids, Appl. phys. Lett. 89, 143119 (2006) · Zbl 1137.82329
[14] Leong, K. C.; Yang, C.; Murshed, S. M. S.: A model for the thermal conductivity of nanofluids – the effect of interfacial layer, J. nanoparticle res. 8, 245-254 (2006)
[15] Vladkov, M.; Barrat, J. -L.: Modeling transient absorption and thermal conductivity in a simple nanofluid, Nano lett. 6, 1224-1228 (2006)
[16] Xue, L.; Keblinski, P.; Phillpot, S. R.; Choi, S. U. S.; Eastman, J. A.: Effect of liquid layering at the liquid – solid interface on thermal transport, Int. J. Heat mass transfer 47, 4277-4284 (2004) · Zbl 1111.76333 · doi:10.1016/j.ijheatmasstransfer.2004.05.016
[17] Ben-Abdallah, P.: Heat transfer through near-field interactions in nanofluids, Appl. phys. Lett. 89, 113117 (2006)
[18] Vadasz, J. J.; Govender, S.; Vadasz, P.: Heat transfer enhancement in nano-fluids suspensions: possible mechanism and explanations, Int. J. Heat mass transfer 48, 2673-2683 (2005)
[19] Buongiorno, J.: Convective transport in nanofluids, J. heat transfer 128, 240-250 (2006)
[20] Putnam, S. A.; Cahill, D. G.; Braun, P. V.; Ge, Z.; Shimmin, R. G.: Thermal conductivity of nanoparticle suspension, J. appl. Phys. 99, 084308 (2006)
[21] Venerus, D. C.; Kabadi, M. S.; Lee, S.; Perez-Luna, V.: Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering, J. appl. Phys. 100, 094310 (2006)
[22] Bonnecaze, R. T.; Brady, J. F.: The effective conductivity of random suspensions of spherical particles, Proc. roy. Soc. lond. A 432, 445-465 (1991)
[23] Carnahan, N. F.; Starling, K. E.: Equation of state for non-attracting rigid spheres, J. chem. Phys. 51, 635-636 (1969)
[24] Louge, M. Y.; Mohd.-Yusof, J.; Jenkins, J. T.: Heat transfer in the pneumatic transport of massive particles, Int. J. Heat mass transfer 36, 265-275 (1993) · Zbl 0775.76194 · doi:10.1016/0017-9310(93)80002-C
[25] Vincenti, W. G.; Kruger, C. K.: Introduction to physical gas dynamics, (1965)
[26] Hunter, R. J.: Foundations of colloidal science, (2001)
[27] Cohen, E. G. D.; De Schepper, I. M.: Comments on ”scaling of transient hydrodynamic interactions in concentrated suspensions”, Phys. rev. Lett. 75, 2252 (1995)
[28] Eapen, J.; Williams, W. C.; Buongiorno, J.; Hu, L. -W.; Yip, S.: Mean-field versus microconvection effects in nanofluid thermal conduction, Phys. rev. Lett. 99, 095901 (2007)
[29] Rusconi, R.; Williams, W. C.; Buongiorno, J.; Piazza, R.; Hu, L. -W.: Numerical analysis of convective instabilities in a transient short-hot-wire setup for measurement of liquid thermal conductivity, Int. J. Thermophys. 28, 1131-1146 (2007)
[30] Groschl, M.: Ultrasonic separation of suspended particles. Part I: Fundamentals, Acustica 84, 432-447 (1998)
[31] Haake, A.; Neild, A.; Kim, D. -H.; Ihm, J. -E.; Sun, Y.; Dual, J.; Ju, B. -K.: Manipulation of cells using an ultrasonic pressure field, Ultrasound med. Biol. 31, 857-864 (2005)
[32] Mcnab, G. S.; Meisen, A.: Thermophoresis in liquids, J. colloid interface sci. 44, 339-346 (1973)
[33] Epstein, P. S.: Zür theorie des radiometers, Z. phys. 54, 537-563 (1929)
[34] Giddings, J. C.; Shinudu, P. M.; Semenov, S. N.: Thermophoresis of metal particles in a liquid, J. colloid interface sci. 176, 454-458 (1995)
[35] Putnam, S. A.; Cahill, D. G.: Micron-scale apparatus for measurements of thermodiffusion in liquids, Rev. sci. Instrum. 75, 2368-2372 (2004)
[36] S.A. Putnam, Thermal probes of nanoparticle interfaces: thermodiffusion and thermal conductivity of nanoparticle suspensions, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2007.
[37] Putnam, S. A.; Cahill, D. G.: Transport of nanoscale latex spheres in a temperature gradient, Langmuir 21, 5317-5323 (2005)
[38] Würger, A.: Heat capacity-driven inverse Sorét effect of colloidal nanoparticles, Europhys. lett. 74, 658-664 (2006)
[39] Putnam, S. A.; Cahill, D. G.; Wong, G. C. L.: Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles, Langmuir 23, 9221-9228 (2007)
[40] Ning, H.; Buitenhuis, J.; Dhont, J. K. G.; Wiegand, S.: Thermal diffusion behavior of hard-sphere suspensions, J. chem. Phys. 125, 204911 (2006)
[41] Iacopini, S.; Rusconi, R.; Piazza, R.: The ”macromolecular tourist”: universal temperature dependence of thermal diffusion in aqueous colloidal suspensions, Eur. phys. J. E 19, 59-67 (2006)
[42] Bringuier, E.: On the notion of thermophoretic velocity, Phil. mag. 87, 873-883 (2007)
[43] Vigolo, D.; Brambilla, G.; Piazza, R.: Thermophoresis of microemulsion droplets: size dependence of the Sorét effect, Phys. rev. E 75, 040401(R) (2007)
[44] Happel, J.; Brenner, H.: Low Reynolds number hydrodynamics, (1965)
[45] King, L. V.: On the acoustic radiation pressure on spheres, Proc. R. Soc. lond. A 147, 212-240 (1934)
[46] Yosioka, K.; Kawasima, Y.: Acoustic radiation pressure on a compressible sphere, Acustica 5, 167-173 (1955)
[47] Doinikov, A. A.: Acoustic radiation pressure on a rigid sphere in a viscous liquid, Proc. R. Soc. lond. A 447, 447-466 (1994) · Zbl 0826.76084 · doi:10.1098/rspa.1994.0150
[48] Doinikov, A. A.: Acoustic radiation pressure on a compressible sphere in a viscous liquid, J. fluid mech. 267, 1-21 (1994) · Zbl 0817.76076 · doi:10.1017/S0022112094001096
[49] Kynch, G. J.: A theory of sedimentation, Trans. Faraday soc. 48, 166-176 (1952)
[50] Batchelor, G. K.: Sedimentation in a dilute dispersion of spheres, J. fluid mech. 52, 245-268 (1972) · Zbl 0252.76069 · doi:10.1017/S0022112072001399
[51] Caflisch, R. E.; Luke, J. H. C.: Variance in the sedimentation speed of a suspension, Phys. fluids 28, 759-760 (1985) · Zbl 0586.76044 · doi:10.1063/1.865095
[52] Davis, R. H.; Acrivos, A.: Sedimentation of non-colloidal particles at low Reynolds numbers, Ann. rev. Fluid mech. 17, 91-118 (1985)
[53] Koch, D. L.: Hydrodynamic diffusion in a suspension of sedimenting point particles with periodic boundary conditions, Phys. fluids 6, 2894-2900 (1994) · Zbl 0830.76086 · doi:10.1063/1.868117
[54] Nicolai, H.; Guazzelli, E.: Effects of the vessel size on the hydrodynamic diffusion of sedimenting spheres, Phys. fluids 7, 3-4 (1995)
[55] Nicolai, H.; Herzhaft, B.; Hinch, E. J.; Oger, L.; Guazzelli, E.: Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres, Phys. fluids 7, 12-23 (1995)
[56] Nguyen, N. -Q.; Ladd, A. J. C.: Sedimentation of hard-sphere suspensions at low Reynolds number, J. fluid mech. 525, 73-104 (2005) · Zbl 1065.76192 · doi:10.1017/S0022112004002563
[57] Mucha, P. J.; Brenner, M. P.: Diffusivities and front propagation in sedimentation, Phys. fluids 15, 1305-1313 (2003) · Zbl 1186.76387 · doi:10.1063/1.1564824
[58] Koch, D. L.; Sangani, A. S.: Particle pressure and marginal stability limits for a homogeneous monodisperse gas fluidized bed: kinetic theory and numerical simulations, J. fluid mech. 400, 229-263 (1999) · Zbl 0949.76085 · doi:10.1017/S0022112099006485
[59] Carman, P. C.: The determination of the specific surface area of powder, J. soc. Chem. ind. 57, 225-236 (1937)
[60] Spelt, P. D. M.; Norato, M. A.; Sangani, A. S.; Greenwood, M. S.; Tavlarides, L. L.: Attenuation of sound in concentrated suspensions: theory and experiments, J. fluid mech. 430, 51-86 (2001) · Zbl 0974.76076 · doi:10.1017/S002211200000272X
[61] Torquato, S.: Nearest-neighbor statistics for packings of hard spheres and disks, Phys. rev. E 51, 3170-3182 (1995)
[62] P.E. Gharagozloo, K.E. Goodson, J.K. Eaton, Impact of thermodiffusion on temperature fields in stationary nanofluids. In: Proceedings of IPACK 2007, ASME InterPACK’07, July 8 – 12, Vancouver, BC, IPACK2007-33293, American Society of Mechanical Engineers, 2007, pp. 1 – 6.
[63] Nagasaka, Y.; Nagashima, A.: Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method, J. phys. E: sci. Instrum. 14, 1435-1440 (1981)
[64] Carslaw, H. S.; Jaeger, J. C.: Conduction of heat in solids, (1959) · Zbl 0029.37801
[65] Knibbe, P. G.; Raal, J. D.: Simultaneous measurements of the thermal conductivity and thermal diffusivity of liquids, Int. J. Thermophys. 8, 181-191 (1987)
[66] Israelachvili, J. N.: Intermolecular and surface forces, (1991)
[67] Wilson, O. M.; Hu, X.; Cahill, D. G.; Braun, P. V.: Colloidal metal particles as probes of nanoscale thermal transport in fluids, Phys. rev. B 66, 224301 (2002)
[68] Lin, M. Y.; Lindsay, H. M.; Weitz, D. A.; Ball, R. C.; Klein, R.; Meakin, P.: Universality in colloid aggregation, Nature 339, 360-362 (1989)
[69] Lin, M. Y.; Lindsay, H. M.; Weitz, D. A.; Ball, R. C.; Klein, R.; Meakin, P.: Universality of fractal aggregates as probed by light scattering, Proc. R. Soc. lond. A 423, 71-87 (1989)
[70] Lin, M. Y.; Lindsay, H. M.; Weitz, D. A.; Klein, R.; Ball, R. C.; Meakin, P.: Universal diffusion-limited colloid aggregation, J. phys.: condens. Matter 2, 3093-3113 (1990)
[71] Perkins, R. A.; Ramirez, M. L. V.; De Castro, C. A. Nieto: Thermal conductivity of saturated liquid toluene by use of anodized tantalum hot wires at high temperatures, J. res. Natl. inst. Stand. technol. 105, 255-265 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.