×

Global stability for a tuberculosis model with isolation and incomplete treatment. (English) Zbl 1356.92093

Summary: This paper deals with the global analysis of a dynamical model for the spread of tuberculosis with isolation and incomplete treatment. The model exhibits the traditional threshold behavior. We prove that when the basic reproductive number is less than unity, the disease-free equilibrium is globally asymptotically stable. When the basic reproductive number is greater than unity, the disease-free equilibrium is unstable and a unique endemic equilibrium exists which is locally asymptotically stable and globally asymptotically stable when the disease-induced death rate is equal to zero. The stability of disease-free equilibrium is derived by using Lyapunov stability theory and LaSalle’s invariant set theorem. The global stability of endemic equilibrium is proved by generalized Dulac-Bendixson criterion when the disease-induced death rate is equal to zero. Numerical simulations support our analytical results.

MSC:

92D30 Epidemiology
34D23 Global stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] American Thoracic Society (1994) Treatment of tuberculosis and tuberculosis infection in adults and children. Am J Respir Crit Care Med 149:1359-2374 · Zbl 1251.92024
[2] Anderson RM, May RM (1991) Infectious disease of humans, dynamics and control. Oxford University Press, London
[3] Bhatia NP, Szegö GP (1970) Stability theory of dynamical systems. Springer, Berlin · Zbl 0213.10904 · doi:10.1007/978-3-642-62006-5
[4] Blower SM, McLean AR, Porco TC et al (1995) The intrinsic transmission dynamics of tuberculosis epidemics. Nat Med 1:815-821 · doi:10.1038/nm0895-815
[5] Blower SM, Small PM, Hopewell PC (1996) Control strategies for tuberculosis epidemics: new models for old problems. Science 273:497-500 · doi:10.1126/science.273.5274.497
[6] Busenberg S, Van Driessche P (1990) Analysis of a disease transimission model in a population with varying size. J Math Biol 28:257-270 · Zbl 0725.92021 · doi:10.1007/BF00178776
[7] Castillo-Chavez C, Huang W, Li J (1996) Competitive exclusion in gonorrhea models and other sexually transmitted diseases. SIAM J Appl Math 56:494-508 · Zbl 0845.92021 · doi:10.1137/S003613999325419X
[8] Castillo-Chavez C, Feng Z (1997) To treat or not to treat: the case of tuberculosis. J Math Biol 35:629-656 · Zbl 0895.92024 · doi:10.1007/s002850050069
[9] Castillo-Chavez C, Huang W, Li J (1999) Competitive exclusion and coexistence of multiple strains in an SIS STD models. SIAM J Appl Math 59:1790-1811 · Zbl 0934.92029 · doi:10.1137/S0036139997325862
[10] Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1:361-404 · Zbl 1060.92041 · doi:10.3934/mbe.2004.1.361
[11] Castillo-Chavez C, Thieme H (1995) Asymptotically autonomous epidemic models. In: Arino O, Axelrod D, Kimmel M, Langlais M (eds) Theory of epidemics, mathematical populations dynamics: analysis of heterogeneity, vol 1, pp 33-50 · Zbl 1056.92052
[12] Connell McCluskey C, van den Driessche P (2004) Global analysis of two tuberculosis models. J Dyn Differ Equ 16:139-166 · Zbl 1056.92052 · doi:10.1023/B:JODY.0000041283.66784.3e
[13] Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:28-29 · Zbl 1015.92036
[14] Feng Z, Castillo-Chavez C, Capurro AF (2000) A model for tuberculosis with exogenous reinfection. Theor Popul Biol 57:235-247 · Zbl 0972.92016 · doi:10.1006/tpbi.2000.1451
[15] Feng Z, Iannelli M, Milner F (2002) A two-strain tuberculosis model with age of infection. SIAM J Appl Math 62:1634-1656 · Zbl 1017.35066 · doi:10.1137/S003613990038205X
[16] Hetcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599-635 · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[17] Kirschner D (1999) Dynamics of co-infection with M-tuberculosis and HIV-I. Theor Popul Biol 55:94-209 · Zbl 0916.92018 · doi:10.1006/tpbi.1998.1382
[18] LaSalle JP (1976) The stability of dynamical systems. In: Society for industrial and applied mathematics, Philadelphia. With an appendix: “Limiting equations and stability of nonautonomous ordinary differential equations” by Artstein Z. Regional Conference Series in Applied Mathematics · Zbl 0364.93002
[19] LaSalle JP (1968) Stability theory for ordinary differential equations. J Differ Equ 41:57-65 · Zbl 0159.12002 · doi:10.1016/0022-0396(68)90048-X
[20] Liu LJ, Zhang TL (2011) Global stability for a tuberculosis model. Math Comput Model 54:836-845 · Zbl 1225.34065 · doi:10.1016/j.mcm.2011.03.033
[21] Mittal C, Gupta S (2011) Noncompliance to DOTS: how it can be decreased. Indian J Commun Med 36:27-30 · doi:10.4103/0970-0218.80789
[22] National Health and Family Planning Commission of the PRC (2003-2013) http://www.nhfpc.gov.cn/jkj/s2907/list.shtml
[23] Palomino JC, Ranos DF, da Silva PA (2009) New anti-tuberculosis drugs: strategies, sources and new molecules. Curr Med Chem 16:1898-1904 · doi:10.2174/092986709788186066
[24] World Health Organization (2012) Global tuberculosis report 2012. World Health Organization, Geneva
[25] World Health Organization (2014) http://www.who.int/mediacentre/factsheets/fs104/en/ · Zbl 1211.92038
[26] Yang YL, Li JQ, Ma ZE, Liu LJ (2010) Global stability of two models with incomplete treatment for tuberculosis. Chaos Solitons Fractals 43:79-85 · Zbl 1211.92038 · doi:10.1016/j.chaos.2010.09.002
[27] Yang YL, Li JQ, Zhou YC (2012) Global stability of two tuberculosis models with treatment and self-cure. Rocky Mountain J Math 42(4):1367-1386 · Zbl 1251.92024 · doi:10.1216/RMJ-2012-42-4-1367
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.