×

Dynamics of co-infection with M. tuberculosis and HIV-1. (English) Zbl 0916.92018

Summary: Since 1985, there has been a renewed epidemic of tuberculosis (TB) that was previously thought to be in check. There is evidence to believe the main factor for this resurgence has been the human immunodeficiency virus (HIV). Co-infection with HIV and \(M\). Tuberculosis has profound implications for the course of both diseases. This study represents a first attempt to understand how the introduction of an opportunistic infection, namely Mycobacterium tuberculosis, the bacteria that causes TB, affects the dynamic interaction of HIV–l and the immune system.
We create a mathematical model using ordinary differential equations to describe the interaction of HIV and TB with the immune system. It is known that infection with TB can decrease the \(\text{CD4}^+T\) cell counts – a key marker of AIDS progression; thus, it shortens survival in HIV infected individuals. Another main marker for HIV progression is the viral load. If this load is increased due to the presence of opportunistic infections, the disease progression is much more rapid. We also explore the effects of drug treatment on the TB infection in the doubly-infected patient. \(\copyright\) 1999 Acadamic Press.

MSC:

92C50 Medical applications (general)
92C60 Medical epidemiology
92D30 Epidemiology
34C23 Bifurcation theory for ordinary differential equations
34D99 Stability theory for ordinary differential equations

Software:

AUTO
Full Text: DOI

References:

[1] Antia, R.; Levin, B. R.; May, R. M., Within-host population dynamics and the evolution and maintenance of microparasite virulence, Am. Nat., 144, 457-472 (1994)
[2] Antia, R.; Koella, J. C.; Perrot, V., Models of the within-host dynamics of persistent mycobacterial infections, Proc. R. Soc. Lond. B, 257-263 (1996)
[3] Blower, S. M.; Small, P. M.; Howell, P. C., Control strategies for tuberculosis epidemics: New models for old problems, Science, 273, 497-500 (1996)
[4] Bryt, A. B.; Rogers, D. E., HIV and TB: An analysis and a course of action, Bull. NY Acad. Med., 71, 18-36 (1994)
[5] Tuberculosis Morbidity. Tuberculosis Morbidity, United States, MMWR, 42 (1993), p. 696-704
[6] Connor, R. I.; Mohri, H.; Cao, Y.; Ho, D. D., Increased viral burden and cytopathicity correlate temporally with CD \(4^+\), J. Virol., 67, 772-1777 (1993)
[7] Delemarre, F. G.; Kors, N.; Kraal, G.; van Rooijen, N., Repopulation of macrophages in popliteal lymph nodes of mice after liposome-meditated depletion, J. Leukocyte Biol., 47, 251-257 (1990)
[8] Dimitrov, D. S.; Willey, R. L.; Sato, H., Quantiation of HIV-1 infection kinetics, J. Virol., 67, 2182-2190 (1993)
[9] Doedel, E., AUTO. AUTO, Continuation and Bifurcation Software for Ordinary Differential Equations (1981)
[10] Edlin, B.; Tokars, J. I.; Gricco, M. H., An outbreak of MDR-TB among hospitalized patients with AIDS, New Eng. J. Med., 326, 1514-1521 (1992)
[11] Ermentrout, B., XPPAUT3.0. XPPAUT3.0, The Differential Equations Tool (1992)
[12] Gittler, J., Controlling resurgent TB: Public health agencies, public policy and law, J. Health Pol., 19, 107-147 (1994)
[13] Haase, A. T.; Henry, K.; Zupancic, M., Quantitative image analysis of HIV-1 infection in lymphoid tissue, Science, 274, 985-989 (1996)
[14] Ho, D. D.; Neumann, A. U.; Perelson, A. S., Rapid turnover of plasma virions and CD \(4^+\), Nature, 373, 123-126 (1995)
[15] Iseman, M. D.; Madsen, L. A., Drug resistant TB, Clin. Chest Med., 10, 341-353 (1989)
[16] Katz, P.; Goldstein, R. A.; Fauci, A. S., Immunoregulation in infection caused byM. tuberculosis, J. Infec. Dis., 140, 12-21 (1979)
[17] Kirschner, D.; Perelson, A., A model for the immune system response to HIV: AZT treatment studies, Mathematical Population Dynamics: Analysis of Heterogeneity and Theory of Epidemics (1995), Wuerz Publishing, p. 296-310
[18] Kirschner, D.; Webb, G. F., A model for treatment strategy in the chemotherapy of AIDS, Bull. Math. Biol., 58, 367-390 (1996) · Zbl 0853.92009
[19] Kirschner, D.; Webb, G. F., A mathematical model of combined drug therapy of HIV infection, J. Theoret. Med., 1, 25-34 (1997(a)) · Zbl 0925.92073
[20] Kirschner, D.; Webb, G. F., Qualitative differences in HIV chemotherapy between resistance and remission outcomes, Emerging Infect. Dis., 3, 273-283 (1997(b))
[21] Kirschner, D.; Webb, G. F., Understanding drug resistance in the monotherapy treatment of HIV infection, Bull. Math. Biol., 59, 763-785 (1997(c)) · Zbl 0922.92011
[22] Kirschner, D.; Mehr, R.; Perelson, A., The role of the thymus in adult and pediatric HIV-1 infection, J. AIDS Human Retrov., 18, 95-109 (1988)
[23] Lewis, C. E.; McGee, J., The Macrophage (1992), IRL Press: IRL Press Oxford
[24] Martin, D. J.; Sim, J. G.M.; Sole, G. J., \( CD^+\), JAIDS, 8, 386-391 (1995)
[25] McLean, A. R.; Michie, C. A., In vivo, Proc. Natl. Acad. Sci. U.S.A., 92, 200-205 (1995)
[26] Meltzer, M. S.; Skillman, D. R.; Gomatos, P. J., Macrophages and HIV, Immunol. Today, 11, 217-233 (1990)
[27] Narain, J. P.; Raviglione, M. C.; Kochi, A., HIV-associated TB in developing countries: Epidemiology and strategies for prevention, Tubercle Lung Dis., 73, 311-321 (1992)
[28] Nowak, M. A.; May, R. M.; Anderson, R. M., The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease, AIDS, 4, 1095-1103 (1990)
[29] Nowak, M. A.; May, R. M., Mathematical biology of HIV infections: Antigenic variation and diversity threshold, Math. Biosci., 106, 1-21 (1991) · Zbl 0738.92008
[30] Nowak, M. A.; May, R. M., Coexistence and competition in HIV infection, J. Theoret. Biol., 159, 329-342 (1992)
[31] Nowak, M. A.; Bangham, C. R.M., Population dynamics of immune responses to persistent viruses, Science, 272, 74-79 (1996)
[32] Orenstein, J. M.; Fox, C.; Wahl, S. M., Macrophages as a source of HIV during opportunistic infections, Science, 276, 1857-1861 (1997)
[33] Pauza, D., HIV persistence in monocytes leads to pathogenesis and AIDS, Cellular Immunol., 112, 1-11 (1989)
[34] Perelson, A. S., Modeling the interaction of the immune system with HIV, (Castillo-Chavez, C., Mathematical and Statistical Approaches to AIDS Epidemiology. Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomath., 83 (1989), Springer-Verlag: Springer-Verlag New York), 350-370 · Zbl 0683.92001
[35] Perelson, A.; Kirschner, D.; DeBoer, R., Dynamics of HIV infection of CD \(4^+\), Math. Biosci., 114, 81-125 (1993) · Zbl 0796.92016
[36] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D., HIV-1 dynamics in vivo: Virion clearance rate, infected cell lifespan, and viral generation time, Science, 271, 1582-1586 (1996)
[37] Pfuetze, K. H.; Rander, D. B., Clinical Tuberculosis (1966), Thomas: Thomas Springfield
[38] Selwyn, P. A.; Hartel, D.; Lewis, V. A., A prospective study of the risk of TB among IV-drug users with HIV, New Eng. J. Med., 320, 545-550 (1989)
[39] Shafer, R. W.; Bloch, A. B.; Larkin, C., Predictors of survival in HIV-infected tuberculosis patients, AIDS, 10, 269-272 (1996)
[40] Tanaka, Y.; Morita, C. T.; Tanaka, Y., Natural and synthetic non-peptide antigens recognized by humanγδ, Nature, 375, 155-158 (1995)
[41] Torres, R. A.; Mani, S.; Altholz, J.; Brickner, P. W., HIV infection among homeless men in a NYC shelter-association with TB infection, Arch. Intern. Med., 150, 2030-2036 (1990)
[42] Tough, D. F.; Sprent, J., Lifespan of lymphocytes, Immunol. Res., 14, 1-12 (1995)
[43] Vareldzis, B. P.; Grosset, J.; de Kantor, I., Drug resistant TB-laboratory issues, Tubercle Lung Dis., 75, 1-7 (1989)
[44] Walter Reed Army Institute of Research, Washington, DC. 1989, The Current Distribution of CD \(4^+\); Walter Reed Army Institute of Research, Washington, DC. 1989, The Current Distribution of CD \(4^+\)
[45] Treatment of TB: Guidelines for National Programmes (1983), World Health Organization: World Health Organization Geneva, p. 1-43
[46] Youmans, G. P., Tuberculosis (1979), W. B. Sanders Co: W. B. Sanders Co London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.