×

Constructing number field isomorphisms from \(*\)-isomorphisms of certain crossed product \(\mathrm{C}^*\)-algebras. (English) Zbl 1543.46039

Summary: We prove that the class of crossed product \(\mathrm{C}^*\)-algebras associated with the action of the multiplicative group of a number field on its ring of finite adeles is rigid in the following explicit sense: Given any \(*\)-isomorphism between two such \(\mathrm{C}^*\)-algebras, we construct an isomorphism between the underlying number fields. As an application, we prove an analogue of the Neukirch-Uchida theorem using topological full groups, which gives a new class of discrete groups associated with number fields whose abstract isomorphism class completely characterises the number field.

MSC:

46L05 General theory of \(C^*\)-algebras
11R56 Adèle rings and groups
11M55 Relations with noncommutative geometry

References:

[1] Arledge, J.; Laca, M.; Raeburn, I., Semigroup crossed products and Hecke algebras arising from number fields, Doc. Math., 2, 115-138 (1997) · Zbl 0940.47062 · doi:10.4171/dm/25
[2] Blackadar, B., K-Theory for Operator Algebras, Mathematical Sciences Research Institute Publications 5 (1986), New York: Springer, New York · Zbl 0597.46072 · doi:10.1007/978-1-4613-9572-0
[3] Blackadar, B.; Dădărlat, M.; Rørdam, M., The real rank of inductive limit C*-algebras, Math. Scand., 69, 2, 211-216 (1991) · Zbl 0776.46025 · doi:10.7146/math.scand.a-12379
[4] Bost, J-B; Connes, A., Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (N.S.), 1, 3, 411-457 (1995) · Zbl 0842.46040 · doi:10.1007/BF01589495
[5] Brownlowe, N.; Larsen, NS; Putnam, IF; Raeburn, I., Subquotients of Hecke C*-algebras, Ergodic Theory Dyn. Syst., 25, 5, 1503-1520 (2005) · Zbl 1093.46027 · doi:10.1017/S0143385705000143
[6] Bruce, C., C*-algebras from actions of congruence monoids on rings of algebraic integers, Trans. Am. Math. Soc., 373, 1, 699-726 (2020) · Zbl 1444.46033 · doi:10.1090/tran/7966
[7] Bruce, C.; Li, X., On K-theoretic invariants of semigroup C*-algebras from actions of congruence monoids, Am. J. Math., 145, 1, 251-285 (2023) · Zbl 1515.46024 · doi:10.1353/ajm.2023.0005
[8] Bruce, C., Li, X.: Algebraic actions II. Groupoid rigidity, preprint, arXiv:2301.04459
[9] Bruce, C., Takeishi, T.: On the C*-algebra associated with the full adele ring of a number field, preprint, arXiv:2209.10857
[10] Carlsen, TM; Ruiz, E.; Sims, A., Equivalence and stable isomorphism of groupoids, and diagonal-preserving stable isomorphisms of graph C*-algebras and Leavitt path algebras, Proc. Am. Math. Soc., 145, 4, 1581-1592 (2017) · Zbl 1368.46042 · doi:10.1090/proc/13321
[11] Cohen, PB, A \(C^*\)-dynamical system with Dedekind zeta partition function and spontaneous symmetry breaking, J. Théor. Nombres Bordeaux, 11, 1, 15-30 (1999) · Zbl 0962.11031 · doi:10.5802/jtnb.236
[12] Connes, A., Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Selecta Math. (N.S.), 5, 1, 29-106 (1999) · Zbl 0945.11015 · doi:10.1007/s000290050042
[13] Connes, A.; Marcolli, M.; Ramachandran, N., KMS states and complex multiplication, Selecta Math. (N.S.), 11, 3-4, 325-347 (2005) · Zbl 1106.58005
[14] Cornelissen, G.; de Smit, B.; Li, X.; Marcolli, M.; Smit, H., Characterization of global fields by Dirichlet L-series, Res. Number Theory, 5, 1, 7, 15 (2019) · Zbl 1460.11137 · doi:10.1007/s40993-018-0143-9
[15] Cornelissen, G.; Li, X.; Marcolli, M.; Smit, H., Reconstructing global fields from dynamics in the abelianized Galois group, Selecta Math. (N.S.), 25, 2, 24, 18 (2019) · Zbl 1431.11110 · doi:10.1007/s00029-019-0469-8
[16] Cornelissen, G., Marcolli, M.: Quantum statistical mechanics, L-series and anabelian geometry I: partition functions, In: Trends in Contemporary Mathematics. INdAM Series, vol. 8, p. 10. Springer, Heidelberg (2014) · Zbl 1329.82007
[17] Cuntz, J.: C*-algebras associated with the \(ax+b\)-semigroup over \(\mathbb{N}, K \)-theory and noncommutative geometry, 201-215, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, (2008) · Zbl 1162.46036
[18] Cuntz, J.; Deninger, C.; Laca, M., C*-algebras of Toeplitz type associated with algebraic number fields, Math. Ann., 355, 4, 1383-1423 (2013) · Zbl 1273.22008 · doi:10.1007/s00208-012-0826-9
[19] Cuntz, J.; Echterhoff, S.; Li, X., On the \(K \)-theory of the C*-algebra generated by the left regular representation of an Ore semigroup, J. Eur. Math. Soc., 17, 3, 645-687 (2015) · Zbl 1329.46062 · doi:10.4171/jems/513
[20] Cuntz, J.; Echterhoff, S.; Li, X., On the K-theory of crossed products by automorphic semigroup actions, Q. J. Math., 64, 3, 747-784 (2013) · Zbl 1284.46062 · doi:10.1093/qmath/hat021
[21] Cuntz, J., Li, X.: The regular C*-algebra of an integral domain, Quanta of maths, 149-170, Clay Math. Proc., 11. American Mathematical Society, Providence, RI (2010) · Zbl 1219.46059
[22] Cuntz, J.; Li, X., C*-algebras associated with integral domains and crossed products by actions on adele spaces, J. Noncommutative Geom., 5, 1, 1-37 (2011) · Zbl 1229.46044
[23] Dădărlat, M., Approximate Unitary Equivalence and the Topology of \({\rm Ext}(A, B)\), C*-Algebras (Münster, 1999), 42-60 (2000), Berlin: Springer, Berlin · Zbl 0977.46046
[24] Dădărlat, M.; Gong, G., A classification result for approximately homogeneous C*-algebras of real rank zero, Geom. Funct. Anal., 7, 4, 646-711 (1997) · Zbl 0905.46042 · doi:10.1007/s000390050023
[25] Eilers, S.; Restorff, G.; Ruiz, E., Classification of extensions of classifiable C*-algebras, Adv. Math., 222, 6, 2153-2172 (2009) · Zbl 1207.46055 · doi:10.1016/j.aim.2009.07.014
[26] Giordano, T.; Putnam, IF; Skau, CF, Full groups of Cantor minimal systems, Israel J. Math., 111, 285-320 (1999) · Zbl 0942.46040 · doi:10.1007/BF02810689
[27] Ha, E., Paugam, F.: Bost-Connes-Marcolli systems for Shimura varieties. I. Definitions and formal analytic properties, IMRP Int. Math. Res. Pap. no. 5, 237-286 (2005) · Zbl 1173.82305
[28] Harari, H.; Leichtnam, E., Extension du phénomène de brisure spontanée de symétrie de Bost-Connes au cas des corps globaux quelconques, (French) Selecta Math. (N.S.), 3, 2, 205-243 (1997) · Zbl 0924.46051 · doi:10.1007/s000290050010
[29] Hasse, H.: Number Theory. Grundlehren Math. Wiss., vol. 229, Springer, Berlin (1980) · Zbl 0423.12002
[30] Hodgkin, L., On the K-theory of Lie groups, Topology, 6, 1-36 (1967) · Zbl 0186.57103 · doi:10.1016/0040-9383(67)90010-9
[31] Hofmann, K.H., Morris, S.A.L The Structure of Compact Groups. Third edition, Revised and Augmented. De Gruyter Studies in Mathematics, 25. De Gruyter, Berlin (2013) · Zbl 1277.22001
[32] Hoshi, Y., On the field-theoreticity of homomorphisms between the multiplicative groups of number fields, Publ. Res. Inst. Math. Sci., 50, 2, 269-285 (2014) · Zbl 1297.11135 · doi:10.4171/PRIMS/133
[33] Jacobson, N., Basic Algebra. I (1985), New York: W. H. Freeman and Company, New York · Zbl 0557.16001
[34] Juschenko, K.; Monod, N., Cantor systems, piecewise translations and simple amenable groups, Ann. Math.(2), 178, 2, 775-787 (2013) · Zbl 1283.37011 · doi:10.4007/annals.2013.178.2.7
[35] Juschenko, K.; Nekrashevych, V.; de la Salle, M., Extensions of amenable groups by recurrent groupoids, Invent. Math., 206, 3, 837-867 (2016) · Zbl 1397.20043 · doi:10.1007/s00222-016-0664-6
[36] Kirchberg, E.: Das nicht-kommutative Michael-Auswahlprinzip und die Klassifikation nicht-einfacher Algebren, in C*-algebras (Münster, 1999), 92-141, Springer, Berlin (2000) · Zbl 0976.46051
[37] Kasparov, GG, The operator K-functor and extensions of C*-algebras, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 44, 3, 571-636 (1980) · Zbl 0448.46051
[38] Kubota, Y.; Takeishi, T., Reconstructing the Bost-Connes semigroup actions from K-theory, Adv. Math., 366, 107070 ,33 (2020) · Zbl 1440.46058 · doi:10.1016/j.aim.2020.107070
[39] Laca, M.; Larsen, NS, Hecke algebras of semidirect products, Proc. Am. Math. Soc., 131, 7, 2189-2199 (2003) · Zbl 1029.46108 · doi:10.1090/S0002-9939-02-06851-X
[40] Laca, M.; Larsen, NS; Neshveyev, S., On Bost-Connes types systems for number fields, J. Number Theory, 129, 2, 325-338 (2009) · Zbl 1175.46061 · doi:10.1016/j.jnt.2008.09.008
[41] Laca, M.; Larsen, NS; Neshveyev, S., Ground states of groupoid C*-algebras, phase transitions and arithmetic subalgebras for Hecke algebras, J. Geom. Phys., 136, 268-283 (2019) · Zbl 1492.46063 · doi:10.1016/j.geomphys.2018.09.018
[42] Laca, M.; Neshveyev, S.; Trifković, M., Bost-Connes systems, Hecke algebras, and induction, J. Noncommutative Geom., 7, 2, 525-546 (2013) · Zbl 1303.46061 · doi:10.4171/jncg/125
[43] Laca, M.; van Frankenhuijsen, M., Phase transitions on Hecke C*-algebras and class-field theory over \(\mathbb{Q} \), J. Reine Angew. Math., 595, 25-53 (2006) · Zbl 1136.11070
[44] Laca, M.; Raeburn, I., The ideal structure of the Hecke C*-algebra of Bost and Connes, Math. Ann., 318, 3, 433-451 (2000) · Zbl 1032.46536 · doi:10.1007/s002080000107
[45] Laca, M.; Raeburn, I., Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers, Adv. Math., 225, 2, 643-688 (2010) · Zbl 1203.46045 · doi:10.1016/j.aim.2010.03.007
[46] Li, X., Ring C*-algebras, Math. Ann., 348, 4, 859-898 (2010) · Zbl 1207.46050 · doi:10.1007/s00208-010-0502-x
[47] Li, X., Semigroup C*-algebras and amenability of semigroups, J. Funct. Anal., 262, 10, 4302-4340 (2012) · Zbl 1243.22006 · doi:10.1016/j.jfa.2012.02.020
[48] Li, X., Nuclearity of semigroup C*-algebras and the connection to amenability, Adv. Math., 244, 626-662 (2013) · Zbl 1293.46030 · doi:10.1016/j.aim.2013.05.016
[49] Li, X., On K-theoretic invariants of semigroup C*-algebras attached to number fields, Adv. Math., 264, 371-395 (2014) · Zbl 1302.46043 · doi:10.1016/j.aim.2014.07.014
[50] Li, X., On K-theoretic invariants of semigroup C*-algebras attached to number fields, part II, Adv. Math., 291, 1-11 (2016) · Zbl 1357.46048 · doi:10.1016/j.aim.2015.12.024
[51] Li, X., Continuous orbit equivalence rigidity, Ergodic Theory Dyn. Syst., 38, 4, 1543-1563 (2018) · Zbl 1390.37007 · doi:10.1017/etds.2016.98
[52] Li, X., K-theory for semigroup C*-algebras and partial crossed products, Commun. Math. Phys., 390, 1, 1-32 (2022) · Zbl 1487.19008 · doi:10.1007/s00220-021-04194-9
[53] Li, X.; Lück, W., \(K \)-theory for ring C*-algebras: the case of number fields with higher roots of unity, J. Topol. Anal., 4, 4, 449-479 (2012) · Zbl 1269.46050 · doi:10.1142/S1793525312500203
[54] Mac Lane, S.: Categories for the Working Mathematician. Second edition. Graduate Texts in Mathematics, 5. Springer, New York (1998) · Zbl 0906.18001
[55] Matui, H., Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc. Lond. Math. Soc. (3), 104, 1, 27-56 (2012) · Zbl 1325.19001 · doi:10.1112/plms/pdr029
[56] Matui, H., Topological full groups of one-sided shifts of finite type, J. Reine Angew. Math., 705, 35-84 (2015) · Zbl 1372.22006 · doi:10.1515/crelle-2013-0041
[57] Meyer, R.; Nest, R., The Baum-Connes conjecture via localisation of categories, Topology, 45, 2, 209-259 (2006) · Zbl 1092.19004 · doi:10.1016/j.top.2005.07.001
[58] Meyer, R.; Nest, R., C*-algebras over topological spaces: the bootstrap class, Münster J. Math., 2, 215-252 (2009) · Zbl 1191.46058
[59] Mingo, JA; Phillips, WJ, Equivariant triviality theorems for Hilbert C*-modules, Proc. Am. Math. Soc., 91, 2, 225-230 (1984) · Zbl 0546.46049
[60] Nekrashevych, V., Palindromic subshifts and simple periodic groups of intermediate growth, Ann. Math. (2), 187, 3, 667-719 (2018) · Zbl 1437.20038 · doi:10.4007/annals.2018.187.3.2
[61] Neukirch, J., Kennzeichnung der \(p\)-adischen und der endlichen algebraischen Zahlkörper, (German), Invent. Math., 6, 296-314 (1969) · Zbl 0192.40102 · doi:10.1007/BF01425420
[62] Neukirch, J.: Algebraic Number Theory. 322. Springer, Berlin (1999) · Zbl 0956.11021
[63] Neshveyev, S., KMS states on the C*-algebras of non-principal groupoids, J. Oper. Theory, 70, 2, 513-530 (2013) · Zbl 1299.46067 · doi:10.7900/jot.2011sep20.1915
[64] Nyland, P.; Ortega, E., Topological full groups of ample groupoids with applications to graph algebras, Int. J. Math., 30, 4, 1950018-66 (2019) · Zbl 1466.22002 · doi:10.1142/S0129167X19500186
[65] Prasad, D., A refined notion of arithmetically equivalent number fields, and curves with isomorphic Jacobians, Adv. Math., 312, 198-208 (2017) · Zbl 1430.11153 · doi:10.1016/j.aim.2017.03.017
[66] Perlis, R., On the equation \(\zeta_K(s)=\zeta_{K^{\prime }}(s)\), J. Number Theory, 9, 3, 342-360 (1977) · Zbl 0389.12006 · doi:10.1016/0022-314X(77)90070-1
[67] Perlis, R., On the class numbers of arithmetically equivalent fields, J. Number Theory, 10, 4, 489-509 (1978) · Zbl 0393.12009 · doi:10.1016/0022-314X(78)90020-3
[68] Raeburn, I.; Williams, DP, Morita Equivalence and Continuous-trace C*-Algebras, Mathematical Surveys and Monographs, 60 (1998), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0922.46050
[69] Rørdam, M., Classification of extensions of certain C*-algebras by their six term exact sequences in K-theory, Math. Ann., 308, 1, 93-117 (1997) · Zbl 0874.46039 · doi:10.1007/s002080050067
[70] Rørdam, M., Størmer, E.: Classification of Nuclear C*-Algebras. Entropy in Operator Algebras, Encyclopaedia of Mathematical Sciences, 126. Operator Algebras and Non-commutative Geometry, 7. Springer, Berlin (2002) · Zbl 0985.00012
[71] Rørdam, M.; Larsen, F.; Laustsen, N., An Introduction to K-Theory for C*-Algebras, London Mathematical Society Student Texts, 49 (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0967.19001
[72] Rubin, M., On the reconstruction of topological spaces from their groups of homeomorphisms, Trans. Am. Math. Soc., 312, 2, 487-538 (1989) · Zbl 0677.54029 · doi:10.1090/S0002-9947-1989-0988881-4
[73] Scheffer, W., Maps between topological groups that are homotopic to homomorphisms, Proc. Am. Math. Soc., 33, 562-567 (1972) · Zbl 0236.22008 · doi:10.1090/S0002-9939-1972-0301130-8
[74] Sierakowski, A., The ideal structure of reduced crossed products, Münster J. Math., 3, 237-261 (2010) · Zbl 1378.46050
[75] Sims, A., Szabó, G., Williams, D.: Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension. Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser (2020) · Zbl 1444.46001
[76] Smit, H.: L-series and homomorphisms of number fields, preprint, arXiv:1910.12321 · Zbl 1470.11294
[77] Stuart, D.; Perlis, R., A new characterization of arithmetic equivalence, J. Number Theory, 53, 2, 300-308 (1995) · Zbl 0863.11082 · doi:10.1006/jnth.1995.1092
[78] Takeishi, T., Irreducible representations of Bost-Connes systems, J. Noncommutative Geom., 10, 3, 889-906 (2016) · Zbl 1362.46071 · doi:10.4171/jncg/251
[79] Takeishi, T., Primitive ideals and K-theoretic approach to Bost-Connes systems, Adv. Math., 302, 1069-1079 (2016) · Zbl 1359.46049 · doi:10.1016/j.aim.2016.08.005
[80] Uchida, K., Isomorphisms of Galois groups, J. Math. Soc. Japan, 28, 4, 617-620 (1976) · Zbl 0329.12013 · doi:10.2969/jmsj/02840617
[81] Williams, DP, Crossed Products of C*-Algebras, Mathematical Surveys and Monographs, 134 (2007), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1119.46002
[82] Yalkinoglu, B., On arithmetic models and functoriality of Bost-Connes systems. With an appendix by Sergey Neshveyev, Invent. Math, 191, 2, 383-425 (2013) · Zbl 1270.46066 · doi:10.1007/s00222-012-0396-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.