×

\(L\)-series and isomorphisms of number fields. (English) Zbl 1470.11294

From the Abstract: “Two number fields with equal Dedekind-zeta-function are not necessarily isomorphic. If the number field have equal sets of Dirichlet \(L\)-series, then they are isomorphic. [This result is extended] by showing that the isomorphisms between the number fields are in bijection with \(L\)-series preserving isomorphism [well described] between the character groups.”
Reviewer’s remarks: Indeed, it all started with the work by F. Gaßmann [Math. Z. 25, 661–675 (1926; JFM 52.0156.03)], that number fields with the same Dedekind-zeta-functions need not be isomorphic. In the Introduction the author describes research and developments up to these days, in particular around the analytic number theory problems concerned with that; his main result Theorem A (paraphrased) runs as follows:
Given number fields \(K\) and \(K'\), and denoting by \(\check{G}_K[\ell]\) and \(\check{G}_{K'}[\ell]\) the \(\ell\)-torsion of the character groups of their absolute Galois groups, and letting \(\text{Iso}_{L\text{-series}}(\check{G}_K[\ell],\check{G}_{K'}[\ell])\) being the set of isomorphisms \(\psi: \check{G}_K[\ell]\overset{\sim}{\rightarrow} \check{G}_{K'}[\ell]\) such that \(\chi\) and \(\psi(\chi)\) have the same \(L\)-series for any \(\chi\in\check{G}_K[\ell]\), where \(\ell\) is any prime number, it then holds that there exists a bijection \[ \Theta:\text{Iso}_{L\text{-series}}(\check{G}_K[\ell], \check{G}_{K'}[\ell])\to \text{Iso}(K,K'). \] Theorem A is the main result in the author’s recent PhD-thesis at the University of Utrecht. The case \(\ell=2\) has been shown by Gabriele Dalla Torre in his PhD-thesis at the University of Leiden.
The paper itself is reasonably technical but straightforward.
As to connections with group theory, it has also to do with the following: Given a finite group \(G\) with subgroups \(H\) and \(T\). Let \(1_H\) be the principal character of \(H\) and \(1_T\) that of \(T\). Consider the induced characters \((1_H)^G\) and \((1_T)^G\). Describe necessary and sufficient conditions on the structures of \(G\), \(H\) and \(T\), in order that \((1_H)^G= (1_T)^G\) is fulfilled.
As to those aspects, view the work of B. de Smit [Lect. Notes Comput. Sci. 1423, 392–399 (1998; Zbl 0914.11055)], W. Bosma and B. de Smit [Lect. Notes Comput. Sci. 2369, 67–79 (2002; Zbl 1068.11080)], B. de Smit and H. W. Lenstra jun. [J. Algebra 228, No. 1, 270–285 (2000; Zbl 0958.20011)], N. Gavioli [Trans. Am. Math. Soc. 349, No. 7, 2969–2980 (1997; Zbl 0872.20005)], A. Caranti et al. [Commun. Algebra 22, No. 3, 877–895 (1994; Zbl 0802.20007)].
All these papers just described do establish a welcome extra to the list of recent publications as printed in the paper under review. – All in all, the author’s work has to be praised as a very good piece of the work.

MSC:

11R37 Class field theory
11R42 Zeta functions and \(L\)-functions of number fields
11M41 Other Dirichlet series and zeta functions
20C15 Ordinary representations and characters

References:

[1] Angelakis, Athanasios; Stevenhagen, Peter, Imaginary quadratic fields with isomorphic abelian Galois groups, (Howe, Everett W.; Kedlaya, Kiran S., ANTS X: Proceedings of the Tenth Algorithmic Number Theory Symposium. ANTS X: Proceedings of the Tenth Algorithmic Number Theory Symposium, The Open Book Series, vol. 1 (2013), MSP: MSP Berkeley), 21-39 · Zbl 1344.11072
[2] Artin, Emil; Tate, John, Class Field Theory (2008), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI · Zbl 0176.33504
[3] Cornelissen, Gunther; de Smit, Bart; Li, Xin; Marcolli, Matilde; Smit, Harry, Characterization of global fields by Dirichlet L-series, Res. Number Theory, 5, 7 (2019) · Zbl 1460.11137
[4] Gaßmann, Fritz, Bemerkungen zur Vorstehenden Arbeit von Hurwitz: Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppen, Math. Z., 25 (1926), 661(665)-675 · JFM 52.0156.03
[5] Klingen, Norbert, Zahlkörper mit gleicher Primzerlegung, J. Reine Angew. Math., 299/300, 342-384 (1978) · Zbl 0367.12003
[6] Klingen, Norbert, Arithmetical Similarities, Oxford Science Publications (1998), Clarendon Press · Zbl 0896.11042
[7] Komatsu, Keiichi, On adèle rings of arithmetically equivalent fields, Acta Arith., 43, 2, 93-95 (1984) · Zbl 0527.12010
[8] Kronecker, Leopold, Über die Irreducibilität von Gleichungen, Monatsber. K. Preuss. Akad. Wiss. Berlin, 155-163 (1880) · JFM 12.0065.02
[9] Kubota, Tomio, Galois group of the maximal abelian extension over an algebraic number field, Nagoya Math. J., 12, 177-189 (1957) · Zbl 0079.26803
[10] Narkiewicz, Wladyslaw, Elementary and Analytic Theory of Algebraic Numbers (2004), Springer-Verlag: Springer-Verlag New York-Heidelberg-Berlin · Zbl 1159.11039
[11] Neukirch, Jürgen, Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper, Invent. Math., 6, 296-314 (1969) · Zbl 0192.40102
[12] Neukirch, Jürgen, Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften, vol. 322 (1999), Springer-Verlag: Springer-Verlag New York-Heidelberg-Berlin · Zbl 0956.11021
[13] Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay, Cohomology of Number Fields, Grundlehren der mathematischen Wissenschaften, vol. 323 (2008), Springer-Verlag: Springer-Verlag New York-Heidelberg-Berlin · Zbl 1136.11001
[14] Onabe, Midori, On the isomorphisms of the Galois groups of the maximal abelian extensions of imaginary quadratic fields, Nat. Sci. Rep. Ochanomizu Univ., 27, 2, 155-161 (1976) · Zbl 0354.12004
[15] Perlis, Robert, On the equation \(\zeta_K(s) = \zeta_{K^\prime}(s)\), J. Number Theory, 9, 342-360 (1977) · Zbl 0389.12006
[16] Perlis, Robert, On the class numbers of arithmetically equivalent fields, J. Number Theory, 10, 489-509 (1978) · Zbl 0393.12009
[17] Perlis, Robert; Stuart, Donna, A new characterisation of arithmetic equivalence, J. Number Theory, 53, 2, 300-308 (1995) · Zbl 0863.11082
[18] Pintonello, Matteo, Characterizing number fields with quadratic L-functions (25 June 2018), Università degli studi di Padova, Universiteit Leiden, ALGANT Master Thesis in Mathematics
[19] Serre, Jean-Pierre, A Course in Arithmetic (1973), Springer-Verlag: Springer-Verlag New York-Heidelberg-Berlin · Zbl 0256.12001
[20] Uchida, Kôji, Isomorphisms of Galois groups, J. Math. Soc. Jpn., 28, 4, 617-620 (1976) · Zbl 0329.12013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.