×

Universal deformation formulas. (English) Zbl 1344.58010

Let \(A\) be an associative unitary algebra and let \(B\) be a bialgebra over a field of characteristic zero whose action on \(A\) is compatible with the multiplication \(A\!\otimes\! A\rightarrow A\) and the unit of \(A\). By definition (see [A. Giaquinto and J. J. Zhang, J. Pure Appl. Algebra 128, No. 2, 133–151 (1998; Zbl 0938.17015)]), a universal deformation formula is an element of an extension of \(B\!\otimes\! B\) that determines a deformation of \(A\) by twisting the multiplication. The authors remark that this construction firstly appears in quantum mechanics and physics (e.g. [H. J. Groenewold, Physica 12, 405–460 (1946; Zbl 0060.45002)]) for bialgebras which are the universal enveloping algebras of Lie algebras.
The aim of the paper under review is to describe in a didactic style the main ingredients of the modern theory and to discuss basic results about bialgebra actions and moduli spaces of universal deformation formulas. Among other things, the authors give a historical background and a brief survey of some classical results and examples concerning relations between deformations and universal deformation formulas, they also discuss some useful interpretations in the framework of the theory of operads, generalizations to other types of algebras and their diagrams, etc.

MSC:

58H15 Deformations of general structures on manifolds
13D10 Deformations and infinitesimal methods in commutative ring theory
17B37 Quantum groups (quantized enveloping algebras) and related deformations

References:

[1] Bordemann , M. ( 2007 ). Deformation quantization: A mini-lecture. In:Geometric and Topological Methods for Quantum Field Theory.Contemp. Math., Vol. 434. Providence, RI: Amer. Math. Soc., pp. 3–38 . · Zbl 1208.53092 · doi:10.1090/conm/434/08340
[2] Căldăraru A., J. Pure Appl. Algebra 187 (1) pp 51– (2004) · Zbl 1055.16010 · doi:10.1016/j.jpaa.2003.10.004
[3] Coll , V. Gerstenhaber , M. Giaquinto , A. ( 1989 ). An explicit deformation formula with noncommuting derivations. In:Ring theory 1989 (RamGan and Jerusalem, 1988/1989).Israel Math. Conf. Proc., Vol. 1. Jerusalem: Weizmann, pp. 396–403 .
[4] Gerstenhaber M., Ann. of Math. (2) 88 pp 1– (1968) · Zbl 0182.05902 · doi:10.2307/1970553
[5] Getzler , E. ( 2009 ). Operads revisited. In:Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin. Vol. I.Progr. Math., Vol. 269. Boston, MA: Birkhäuser Boston Inc., pp. 675–698 . · Zbl 1200.18005 · doi:10.1007/978-0-8176-4745-2_16
[6] Giaquinto , A. ( 2011 ). Topics in algebraic deformation theory. In:Higher Structures in Geometry and Physics.Progr. Math., Vol. 287. New York: Birkhäuser/Springer, pp. 1–24 . · Zbl 1270.16024 · doi:10.1007/978-0-8176-4735-3_1
[7] Giaquinto A., J. Pure Appl. Algebra 128 (2) pp 133– (1998) · Zbl 0938.17015 · doi:10.1016/S0022-4049(97)00041-8
[8] Groenewold H. J., Physica 12 pp 405– (1946) · Zbl 0060.45002 · doi:10.1016/S0031-8914(46)80059-4
[9] Loday J.-L., Algebraic Operads (2012) · Zbl 1260.18001 · doi:10.1007/978-3-642-30362-3
[10] Markl , M. ( 2003 ). Operády v současné matematice.Pokroky matematiky, fyziky a astronomie48:239–250. In Czech .
[11] Markl M., Forum Math. 16 (1) pp 129– (2004) · Zbl 1067.55011 · doi:10.1515/form.2004.002
[12] Markl , M. ( 2008 ). Operads and PROPs. In:Handbook of Algebra. Vol. 5.Handb. Algebr., Vol. 5. Amsterdam: Elsevier/North-Holland, pp. 87–140 . · Zbl 1211.18007 · doi:10.1016/S1570-7954(07)05002-4
[13] Markl M., Deformation Theory of Algebras and Their Diagrams (2012) · Zbl 1267.16029
[14] Markl M., J. Algebra 299 pp 171– (2006) · Zbl 1101.18004 · doi:10.1016/j.jalgebra.2005.09.018
[15] Markl M., Operads in Algebra, Topology and Physics (2002) · Zbl 1017.18001
[16] Remm E., J. Algebra 327 pp 13– (2011) · Zbl 1228.18007 · doi:10.1016/j.jalgebra.2010.10.035
[17] Zinbiel , G. W. ( 2012 ). Encyclopedia of types of algebras 2010. Proc. Int. Conf., Nankai Series in Pure, Applied Mathematics and Theoretical Physics. 9:917–298. Singapore: World Scientific . · Zbl 1351.17001 · doi:10.1142/9789814365123_0011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.