×

Study of toroidal magnetic field for the flow past a rotating rigid sphere embedded in the less permeable medium. (English) Zbl 1540.76250

Summary: This paper represents the exact solution for the properties of the conducting fluid that is flowing past a rotating sphere immersed in a porous medium. It’s a continuation of Sharma and Srivastava (Z Angew Math Mech 103:e202200218, 2022), where the sphere is rotating in the clear fluid region. The solution to the problem was found using Stokes’ equation. In this paper the solutions are found using the Brinkman model in terms of special functions- Bessel’s function of the first and second kind. In this problem, the drag force experienced by the rotating sphere is also calculated for the less permeability of the porous medium. The model is solved using the asymptotic expansion method for the prescribed boundary conditions. By this method, the model consisting of partial differential equations is reduced into ordinary differential equations – modified Bessel’s equations. The results for fluid velocity, stream function, and separation parameters are found in terms of Bessel’s functions and these results match with the existing literature in the absence of Reynolds number. The graphs are plotted for the drag force on the rotating sphere and separation parameter. It has been observed that the separation of the particles occurs at the surface of the sphere more often for high permeability and the drag was found to be decreasing for low permeability. Both graphs were plotted for a range of Reynolds numbers.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76U05 General theory of rotating fluids
Full Text: DOI

References:

[1] Anirudh Narayanan, B.; Lakshmanan, G.; Mohammad, A.; Ratna Kishore, V., Laminar flow over a square cylinder undergoing combined rotational and transverse oscillations, J. Appl. Fluid Mech., 14, 1, 259-273, 2021
[2] Castillo, A.; Murch, WL; Einarsson, J.; Mena, B.; Shaqfeh, ESG; Zenit, R., Drag coefficient for a sedimenting and rotating sphere in a viscoelastic fluid, Phys. Rev. Fluids, 4, 063302, 2019 · doi:10.1103/PhysRevFluids.4.063302
[3] Chakraborty, BB, Flow of a conducting fluid past a rotating magnetized sphere, J. Indian Inst. Sci., 45, 1, 1963
[4] Deo, S.; Shukla, P.; Gupta, BR, Drag on a fluid sphere embedded in a porous medium, Adv. Theor. Appl. Mech., 3, 1, 45-52, 2010 · Zbl 1402.76042
[5] El-Sapa, S.; Alsudais, NS, Effect of magnetic field on the motion of two rigid spheres embedded in porous media with slip surfaces, Eur. Phys. J. E, 44, 68, 2021 · doi:10.1140/epje/s10189-021-00073-2
[6] Ghoshal, S., Flow past spheres and spheroids in the presence of a toroidal magnetic field, Pre Appl. Geophys., 81, 223-229, 1970 · doi:10.1007/BF00875029
[7] Grosan, T.; Postelnicu, A.; Pop, I., Brinkman flow of a viscous fluid through a spherical porous medium embedded in another porous medium, Transp Porous Med., 81, 89-103, 2010 · doi:10.1007/s11242-009-9389-y
[8] Jaiswal, BR; Gupta, BR, Brinkman Flow of a Viscous Fluid Past a Reiner-Rivlin Liquid Sphere Immersed in a Saturated Porous Medium, 2015, Dordrecht: Springer, Dordrecht · doi:10.1007/s11242-015-0472-2
[9] Kumar, S., Rangan, P.V., Ramesh, M.V.: Poster: pilot deployment of early warning system for landslides in eastern Himalayas. In: Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM, vol. 03-07-October-2016, pp. 97-108. (2016)
[10] Leont’ev, NE, Flow past a cylinder and a sphere in a porous medium within the framework of the Brinkman equation with the Navier boundary condition, Fluid Dyn., 49, 2, 232-237, 2014 · Zbl 1294.76238 · doi:10.1134/S0015462814020112
[11] Madasu, MK; Bucha, T., Slow motion past a spheroid implanted in a Brinkman medium: slip condition Krishna Prasad, Int. J. Appl. Comput. Math, 7, 162, 2021 · Zbl 1484.76075 · doi:10.1007/s40819-021-01104-4
[12] Majhi, SN; Vasndevaiah, M., Flow separation in a viscous parabolic shear past a sphere, Acta Mech., 45, 233-249, 1982 · Zbl 0499.76039 · doi:10.1007/BF01178042
[13] Mohammad, NF; Waini, I.; Kasim, ARM; Majid, NA, Unsteady Boundary layer flow over a sphere in a porous medium, AIP Conf. Proc., 1870, 040076, 2017 · doi:10.1063/1.4995908
[14] Ovseenko, RI; Ovseenko, YuG, Drag Of A Rotating Sphere, Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, 3, 1, 110-118, 1968 · Zbl 0155.54702
[15] Pop, I.; Ingham, DB, Flow past a sphere embedded in a porous medium based on the Brinkman model, Int. Commun. Heat Mass Transf., 23, 6, 865-874, 1996 · doi:10.1016/0735-1933(96)00069-3
[16] Ramesh, MV; Pullarkatt, D.; Geethu, TH; Rangan, VP, Wireless sensor networks for early warning of landslides: experiences from a decade long deployment, Advancing Culture of Living with Landslides, 2017, Cham: Springer, Cham
[17] Ranger, K.B.: Slow viscous flow past a rotating sphere. In: Mathematical Proceedings of the Cambridge Philosophical Society, POPS, vol. 69, pp. 63-36. (1971)
[18] Saad, EI, Magnetic fields effect on a porous sphere in a nonconcentric spherical cell, J. Porous Media, 24, 4, 1-18, 2021 · doi:10.1615/JPorMedia.2021024932
[19] Sharma, B., Srivastava, N.: Fluid flow in between the differentially rotating spherical shells in the presence of toroidal magnetic field. In: Proceedings of the ASME 2021, Copyright © 2021 by ASME
[20] Sharma, B.; Srivastava, N., Fluid flow past a rotating sphere in the presence of a toroidal magnetic field, Z. Angew. Math. Mech., 103, 2022 · Zbl 1539.76220 · doi:10.1002/zamm.202200218
[21] Singh, P.; Velamati, RK; Prathap, C.; Mohammad, A.; Chander, S., Study of flow patterns and impingement heat transfer for an annular array of eight C-rotating Dual-swirling flames, Int. J. Heat Mass Transf., 144, 118657, 2019 · doi:10.1016/j.ijheatmasstransfer.2019.118657
[22] Solomentsev, YE; Anderson, JL, Rotation of a sphere in Brinkman fluids, Phys. Fluids, 8, 1119, 1996 · Zbl 1025.76563 · doi:10.1063/1.868890
[23] Srivastava, AC; Srivastava, N., Flow past a porous sphere at small Reynolds number, Z. Angew. Math. Phys., 56, 821-835, 2005 · Zbl 1076.76071 · doi:10.1007/s00033-005-2006-1
[24] Srivastava, AC; Srivastava, N., Flow of a viscous fluid at small Reynolds number past a porous sphere with a solid core, Acta Mech., 186, 161-172, 2006 · Zbl 1106.76071 · doi:10.1007/s00707-006-0345-4
[25] Underwood, RL, Calculation of incompressible flow past a circular cylinder at moderate Reynolds numbers, J. Fluid Mech., 37, 1, 95-114, 1969 · Zbl 0175.51902 · doi:10.1017/S0022112069000437
[26] Varghese, J.; Jayakumar, JS, Numerical investigation of flow parameters for solid rigid spheroidal particle in a pulsatile pipe flow, IOP Conf. Ser. Mater. Sci. Eng. (online), 243, 1, 8, 2017 · doi:10.1088/1757-899X/243/1/012008
[27] Vasudeviah, M.; Malathi, V., Slow viscous flow past a spinning sphere with permeable surface, Mech. Res. Commun., 22, 2, 191-200, 1995 · Zbl 0824.76024 · doi:10.1016/0093-6413(95)00011-9
[28] Zhang, K.; Fearn, DR, Hydromagnetic waves in rapidly rotating spherical shells generated by magnetic toroidal decay modes, Geophys. Astrophys. Fluid Dyn., 77, 133-157, 1994 · doi:10.1080/03091929408203679
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.