×

Flow past a cylinder and a sphere in a porous medium within the framework of the Brinkman equation with the Navier boundary condition. (English. Russian original) Zbl 1294.76238

Fluid Dyn. 49, No. 2, 232-237 (2014); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2014, No. 2, 107-112 (2014).
Summary: Exact analytical solutions of the problem of flow past a sphere and a cylinder in a porous medium are derived within the framework of the Brinkman equationwith the Navier boundary condition. Attention is drawn to the fact that the no-slip condition imposed on the interface between the porous medium and a solid, used, in particular, in the case of the Brinkman equation, must be in the general case replaced by a condition that admits nonzero flow velocity at the boundary.

MSC:

76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] H.C. Brinkman, ”A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles,” Appl. Sci. Res. 1(1), 27 (1947). · Zbl 0041.54204 · doi:10.1007/BF02120313
[2] J.-L. Auriault, ”On the Domain of Validity of Brinkman’s Equation,” Transp. Porous Med. 79, 215 (2009). · doi:10.1007/s11242-008-9308-7
[3] H.C. Brinkman, ”On the Permeability of Media Consisting of Closely Packed Porous Particles,” Appl. Sci. Res. 1(1), 81 (1947). · doi:10.1007/BF02120318
[4] I.B. Stechkina, ”Drag of Porous Cylinders in a Viscous Fluid Flow at Low Reynolds Numbers,” Fluid Dynamics 14(6), 912 (1979). · Zbl 0457.76083 · doi:10.1007/BF01051997
[5] V.A. Babkin, ”Investigation of the Relative Motion of a Viscous Fluid and a Porous Medium Using the Brinkman Equation,” Fluid Dynamics 37(4), 587 (2002). · Zbl 1161.76316 · doi:10.1023/A:1020693320001
[6] D.A. Nield, ”Spin-up in a Saturated Porous Medium,” Transp. Porous Med. 4, 495 (1989). · doi:10.1007/BF00179532
[7] A.A. Avramenko and A.V. Kuznetsov, ”Flow Instability in a Curved Porous Channel Formed by Two Concentric Cylindrical Surfaces,” Transp. Porous Med. 69, 373 (2007). · Zbl 1176.76041 · doi:10.1007/s11242-006-9078-z
[8] R. Younsi, A. Harkati, and D. Kalache, ”Numerical Simulation of Thermal and Concentration Natural Convection in a Porous Cavity in the Presence of an Opposing Flow,” Fluid Dynamics 37(6), 854 (2002). · Zbl 1161.76424 · doi:10.1023/A:1022387910706
[9] M. Parvazinia, V. Nassehi, R.J. Wakeman, and M.H.R. Ghoreishy, ”Finite Element Modelling of Flow Through a Porous Medium between Two Parallel Plates Using the Brinkman Equation,” Transp. Porous Med. 63, 71 (2006). · doi:10.1007/s11242-005-2721-2
[10] S.D. Harris, D.B. Ingham, and I. Pop, ”Mixed Convection Boundary-Layer Flow near the Stagnation Point on a Vertical Surface in a Porous Medium: Brinkman Model with Slip,” Transp. Porous Med. 77, 267 (2009). · doi:10.1007/s11242-008-9309-6
[11] R.E. Collins, Flow of Fluids through Porous Materials, Reinhold Publ. Corp., New York (1961).
[12] C.L.M.H. Navier, ”Mémoire sur les lois du mouvement des fluides,” Mémoires de l’Académie des sciences de l’Institut de France 6, 389 (1827).
[13] S. Goldstein, ”Note on the Condition at the Surface of Contact of a Fluid with a Solid Body,” in: S. Goldstein (ed.), Modern Development in Fluid Dynamics. Vol. 2, Clarendon Press, Oxford (1938), p. 676.
[14] E. Lauga, M.P. Brenner, and H.A. Stone, ”Microfluidics: the No-Slip Boundary Condition,” in: C. Tropea et al. (eds.), Handbook of Experimental Fluid Mechanics, Springer, Berlin (2007), p. 1219.
[15] I. Pop and P. Cheng, ”Flow past a Circular Cylinder Embedded in a Porous Medium Based on the Brinkman Model,” Int. J. Engin. Sci. 30, 257 (1992). · Zbl 0747.76092 · doi:10.1016/0020-7225(92)90058-O
[16] I. Pop and D.B. Ingham, ”Flow past a Sphere Embedded in a Porous Medium Based on the Brinkman Model,” Int. Comm. Heat Mass Transfer 23, 865 (1996). · doi:10.1016/0735-1933(96)00069-3
[17] G.A. Korn and Th.A. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, McGraw Hill, New York (1968). · Zbl 1326.00020
[18] A.B. Basset, A Treatise on Hydrodynamics, with Numerous Examples. Vol. 2, Deighton, Bell, and Co., Cambridge (1888). · JFM 20.0970.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.