×

On homotopy nilpotency of loop spaces of Moore spaces. (English) Zbl 1494.55014

For a homotopy associative \(H\)-space \(X\) with homotopy inverse, let \(\varphi_{X,1}=\operatorname{id}_X\) and let \(\varphi_{X,2}:X^2\to X\) denote the commutator map. For \(n\geq 3\), let \(\varphi_{X,n}:X^n\to X\) be the \(n\)-th commutator map defined by \(\varphi_{X,n}=\varphi_{X,2}\circ (\operatorname{id}_X\times \varphi_{X,n-1})\). An \(H\)-space \(X\) is called homotopy nilpotent of class \(n\) if \(\varphi_{X,n+1}\) is null homotopic (i.e. \(\varphi_{X,n+1}\simeq *\)) but \(\varphi_{X,n}\) is not. In this case we write \(\operatorname{nil}X=n\). An \(H\)-space \(X\) is called homotopy nilpotent if \(\operatorname{nil}X<\infty\).
In this paper, the author investigates whether the loop space \(\Omega M(A,n)\) is homotopy nilpotent, where \(A\) is an abelian group and \(M(A,n)\) denotes the Moore space of type \((A,n)\). For \(n\geq 2\) he proves that \(\Omega M(A,n)\) is homotopy nilpotent if and only if \(A\) is a subgroup of \(\mathbb{Q}\). Moreover, he also studies the homotopy nilpotency of the loop space \(\Omega M(A,1)\) and computes \(\operatorname{nil}\Omega M(A,1)\) explicitly for several such examples.

MSC:

55P15 Classification of homotopy type
54E30 Moore spaces
20F18 Nilpotent groups
Full Text: DOI

References:

[1] Arkowitz, M., Introduction to homotopy theory. Universitext, Springer, New York, NY, 2011. · Zbl 1232.55001
[2] Arkowitz, M. and Golasiński, M., On co-H-structures on Moore spaces of type \(\ \left(G,2\right)\). Can. J. Math.46(1994), no. 4, 673-686. · Zbl 0829.55006
[3] Berstein, I. and Ganea, T., Homotopical nilpotency. III. J. Math.5(1961), 99-130. · Zbl 0096.17602
[4] Bott, R. and Samelson, H., On the Pontryagin product in spaces of paths. Comment. Math. Helv.27(1953), 320-337. · Zbl 0052.19301
[5] Devinatz, E. S., Hopkins, M. J., and Smith, J. H., Nilpotence and stable homotopy theory, I. Ann. of Math. (2). 128(1988), no. 2, 207-241. · Zbl 0673.55008
[6] Dror, E., A generalization of the Whitehead theorem.Vol.249. Lecture Notes in Math., Springer-Verlag, Berlin, Germany and New York, NY, 1971, 13-22. · Zbl 0243.55018
[7] Fuchs, L., Infinite Abelian groups. Vol. I. Academic Press, New York, NY and London, UK, 1970. · Zbl 0209.05503
[8] Ganea, T., Lusternik-Schnirelmann category and cocategory. Proc. Lond. Math. Soc.3(1960), no. 1, 623-639. · Zbl 0101.15802
[9] Golasiński, M., The homotopy nilpotency of some homogeneous spaces. Manuscripta Math. (2021). https://doi.org/10.1007/s00229-021-01273-y · Zbl 1480.55012
[10] Golasiński, M., Homotopy nilpotency of localized spheres and projective spaces. Proc. Edinb. Math. Soc. (2), (2021) (accepted). · Zbl 1480.55012
[11] Hatcher, A., Algebraic topology. Cambridge University Press, Cambridge, UK, 2002. · Zbl 1044.55001
[12] Hopkins, M. J., Nilpotence and finite \(\ H\) -spaces. Israel J. Math.66(1989), nos. 1-3, 238-246. · Zbl 0684.55007
[13] Meier, W., Homotopy nilpotence and localization. Math. Z.161(1978), 169-183. · Zbl 0367.55009
[14] Miller, C., The second homology group of a group; relations among commutators. Proc. Amer. Math. Soc.3(1952), 588-595. · Zbl 0047.25703
[15] Moore, J. C., On homotopy groups of spaces with a single nonvanishing homology group. Ann. of Math.59(1954), 549-557. · Zbl 0055.41902
[16] Rao, V. K., Spin \((n)\) is not homotopy nilpotent for \(n\ge 7\). Topology32(1993), 239-249. · Zbl 0776.55006
[17] Rao, V. K., Homotopy nilpotent Lie groups have no torsion in homology. Manuscripta Math.92(1997), 455-462. · Zbl 0880.22005
[18] Sieradski, A. J., Stabilization of self-equivalences of the pseudoprojective spaces. Michigan Math. J.19(1972), no. 2, 109-119. · Zbl 0242.55010
[19] Snaith, V. P., Some nilpotent \(\ H\) -spaces. Osaka J. Math.13(1976), 145-156. · Zbl 0329.55010
[20] Varadarajan, K., Groups for which Moore spaces \(\ M\left(\pi, 1\right){\ }\) exist. Ann. of Math. (2). 84(1966), no. 3, 368-371. · Zbl 0149.20103
[21] Whitehead, G. W., On products in homotopy groups. Ann. of Math. (2). 47(1946), 460-475. · Zbl 0060.41106
[22] Whitehead, G. W., Elements of homotopy theory.Vol.61. Graduate Texts in Math., Springer-Verlag, New York, NY, 1978. · Zbl 0406.55001
[23] Yagita, N., Homotopy nilpotency for simply connected Lie groups. Bull. Lond. Math. Soc.25(1993), 481-486. · Zbl 0796.57015
[24] Zabrodsky, A., Hopf spaces. North-Holland Publishing Company, Amsterdam, Netherlands, 1976. · Zbl 0339.55009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.