×

Rowmotion on \(m\)-Tamari and biCambrian lattices. (English) Zbl 07923222

Summary: Thomas and Williams conjectured that rowmotion acting on the rational \((a, b)\)-Tamari lattice has order \(a + b - 1\). We construct an equivariant bijection that proves this conjecture when \(a \equiv 1(\operatorname{mod} b)\); in fact, we determine the entire orbit structure of rowmotion in this case, showing that it exhibits the cyclic sieving phenomenon. We additionally show that the down-degree statistic is homomesic for this action. In a different vein, we consider the action of rowmotion on Barnard and Reading’s biCambrian lattices. Settling a different conjecture of Thomas and Williams, we prove that if \(c\) is a bipartite Coxeter element of a coincidental-type Coxeter group \(W\), then the orbit structure of rowmotion on the \(c\)-biCambrian lattice is the same as the orbit structure of rowmotion on the lattice of order ideals of the doubled root poset of type \(W\).

MSC:

05E18 Group actions on combinatorial structures
06B10 Lattice ideals, congruence relations
06D75 Other generalizations of distributive lattices

References:

[1] D. Armstrong. Generalized noncrossing partitions and combinatorics of Cox-eter groups. Mem. Amer. Math. Soc., 202(949), 2009. doi:10.1090/ s0065-9266-09-00565-1. · Zbl 1191.05095 · doi:10.1090/s0065-9266-09-00565-1
[2] D. Armstrong, C. Stump, and H. Thomas. A uniform bijection between nonnesting and noncrossing partitions. Trans. Amer. Math. Soc., 365(8), 2013. doi:10. 1090/s0002-9947-2013-05729-7. · Zbl 1271.05011 · doi:10.1090/s0002-9947-2013-05729-7
[3] E. Barnard. The canonical join complex. Electron. J. Combin., 26(1), 2019. doi:10.37236/7866. · Zbl 1516.06008 · doi:10.37236/7866
[4] A. Björner and F. Brenti. Combinatorics of Coxeter groups, volume 231 of Grad-uate Texts in Mathematics. Springer, 2005. · Zbl 1110.05001
[5] G. Birkhoff. Ring of sets. Duke Math. J., 3:443-454, 1937. · Zbl 0017.19403
[6] M. Bousquet-Mélou, G. Chapuy, and L.-F. Préville-Ratelle. The representation of the symmetric group on m-Tamari intervals. Adv. Math., 247:309-342, 2013. doi:10.1016/j.aim.2013.07.014. · Zbl 1283.05268 · doi:10.1016/j.aim.2013.07.014
[7] M. Bousquet-Mélou, E. Fusy, and L.-F. Préville-Ratelle. The number of intervals in the m-Tamari lattices. Electron. J. Combin., 18(2), 2011. doi:10.37236/ 2027. · Zbl 1262.05005 · doi:10.37236/2027
[8] F. Bergeron and L.-F. Préville-Ratelle. Higher trivariate diagonal harmonics via generalized Tamari posets. J. Comb., 3(3):317-341, 2012. doi:10.4310/joc. 2012.v3.n3.a4. · Zbl 1291.05213 · doi:10.4310/joc.2012.v3.n3.a4
[9] M. Bodnar and B. Rhoades. Cyclic sieving and rational Catalan theory. Electron. J. Combin., 23(2), 2016. doi:10.37236/5681. · Zbl 1335.05020 · doi:10.37236/5681
[10] E. Barnard and N. Reading. Coxeter-biCatalan combinatorics. J. Algebraic Com-bin., 47:241-300, 2018. doi:10.1007/s10801-017-0775-1. · Zbl 1387.05270 · doi:10.1007/s10801-017-0775-1
[11] A. Brouwer. On dual pairs of antichains. Stichting Mathematisch Centrum. Zuivere Wiskunde, pages 1-8, 1975. · Zbl 0308.05006
[12] A. Brouwer and A. Schrijver. On the period of an operator, defined on antichains. Stichting Mathematisch Centrum. Zuivere Wiskunde, 1974. · Zbl 0282.06003
[13] P. J. Cameron and D. G. Fon-der Flaass. Orbits of antichains revisited. European J. Combin., 16(6):545-554, 1995. doi:10.1016/0195-6698(95)90036-5. · Zbl 0831.06001 · doi:10.1016/0195-6698(95)90036-5
[14] G. Châtel and V. Pons. Counting smaller elements in the Tamari and m-Tamari lattices. J. Combin. Theory Ser. A, 134:58-97, 2015. doi:10.1016/j.jcta. 2015.03.004. · Zbl 1315.05143 · doi:10.1016/j.jcta.2015.03.004
[15] C. Ceballos, A. Padrol, and C. Sarmiento. The ν-Tamari lattice via ν-trees, ν-bracket vectors, and subword complexes. Electron. J. Combin., 27(1), 2020. doi: 10.37236/8000. · Zbl 1480.06003 · doi:10.37236/8000
[16] M. Cuntz and C. Stump. On root posets for noncrystallographic root systems. Math. Comp., 84(291):485-503, 2015. doi:10.1090/ s0025-5718-2014-02841-x. · Zbl 1337.06001 · doi:10.1090/s0025-5718-2014-02841-x
[17] C. Defant. Meeting covered elements in ν-Tamari lattices. Adv. Appl. Math., 134, 2022. doi:10.1016/j.aam.2021.102303. · Zbl 07461716 · doi:10.1016/j.aam.2021.102303
[18] Michel Marie Deza and Komei Fukuda. Loops of clutters. In Coding Theory and Design Theory, pages 72-92, New York, NY, 1990. Springer New York. doi: 10.1007/978-1-4613-8994-1_7. · Zbl 0723.05114 · doi:10.1007/978-1-4613-8994-1_7
[19] A. Dvoretzky and Th. Motzkin. A problem of arrangements. Duke Math. J., 14(2):305-313, 1947. doi:10.1215/s0012-7094-47-01423-3. · Zbl 0030.16701 · doi:10.1215/s0012-7094-47-01423-3
[20] P. Duchet. Sur les hypergraphes invariants. Discrete Math., 8(3):269-280, 1974. doi:10.1016/0012-365x(74)90139-3. · Zbl 0288.05132 · doi:10.1016/0012-365x(74)90139-3
[21] C. Defant and N. Williams. Semidistrim lattices. Forum. Math. Sigma, 11, 2023. doi:10.1017/fms.2023.46. · Zbl 07699404 · doi:10.1017/fms.2023.46
[22] Sergi Elizalde, Matthew Plante, Tom Roby, and Bruce E. Sagan. Rowmotion on fences. Algebraic Combinatorics, 6(1):17-36, 2023. doi:10.5802/alco.256. · Zbl 1511.05239 · doi:10.5802/alco.256
[23] D. G. Fon-der Flaass. Orbits of antichains in ranked posets. European J. Combin., 14(1):17-22, 1993. doi:10.1006/eujc.1993.1003. · Zbl 0777.06002 · doi:10.1006/eujc.1993.1003
[24] S. Hopkins. The CDE property for skew vexillary permutations. J. Combin. The-ory Ser. A, 168:164-218, 2019. doi:10.1016/j.jcta.2019.06.005. · Zbl 1421.05004 · doi:10.1016/j.jcta.2019.06.005
[25] J. E. Humphreys. Reflection groups and Coxeter groups. Cambridge University Press, 1980.
[26] G. Kreweras. Sur les partitions non croisées d’un cycle. Discrete Math., 1(4):333-350, 1972. doi:10.1016/0012-365x(72)90041-6. · Zbl 0231.05014 · doi:10.1016/0012-365x(72)90041-6
[27] F. Müller-Hoissen, J. M. Pallo, and J. Stasheff. Associahedra, Tamari lattices, and related structures, volume 299 of Progress in Mathematics. Birkhäuser, 2012. · Zbl 1253.00013
[28] D. I. Panyushev. On orbits of antichains of positive roots. European J. Combin., 30(2):586-594, 2009. doi:10.1016/j.ejc.2008.03.009. · Zbl 1165.06001 · doi:10.1016/j.ejc.2008.03.009
[29] J. Propp and T. Roby. Homomesy in products of two chains. Electron. J. Combin., 22(3), 2015. doi:10.37236/3579. · Zbl 1319.05151 · doi:10.37236/3579
[30] L.-F. Préville-Ratelle and X. Viennot. The enumeration of generalized Tamari intervals. Trans. Amer. Math. Soc., 369(7):5219-5239, 2017. doi:10.1090/ tran/7004. · Zbl 1433.05323 · doi:10.1090/tran/7004
[31] N. Reading. Cambrian lattices. Adv. Math., 205(2):313-353, 2006. doi:10. 1016/j.aim.2005.07.010. · Zbl 1106.20033 · doi:10.1016/j.aim.2005.07.010
[32] N. Reading. Clusters, Coxeter-sortable elements and noncrossing parti-tions. Trans. Amer. Math. Soc., 359(12):5931-5958, 2007. doi:10.1090/ s0002-9947-07-04319-x. · Zbl 1189.05022 · doi:10.1090/s0002-9947-07-04319-x
[33] T. Roby. Dynamical algebraic combinatorics and the homomesy phenomenon. In Recent trends in combinatorics, volume 159 of IMA Math. Vol. Appl., pages 619-652. Springer, 2016. doi:10.1007/978-3-319-24298-9_25. · Zbl 1354.05146 · doi:10.1007/978-3-319-24298-9_25
[34] D. B. Rush and X. Shi. On orbits of order ideals of minuscule posets. J. Algebraic Combin., 37:545-569, 2013. doi:10.1007/s10801-012-0380-2. · Zbl 1283.06007 · doi:10.1007/s10801-012-0380-2
[35] V. Reiner, D. Stanton, and D. White. The cyclic sieving phenomenon. Journal of Combinatorial Theory, Series A, 108(1):17-50, 2004. doi:10.1016/j.jcta. 2004.04.009. · Zbl 1052.05068 · doi:10.1016/j.jcta.2004.04.009
[36] D. B. Rush and K. Wang. On orbits of order ideals of minuscule posets II: homo-mesy. 2015. arXiv:1509.08047.
[37] R. P. Stanley. Enumerative Combinatorics, vol. 2. Cambridge University Press, 1999. · Zbl 0928.05001
[38] R. P. Stanley. Promotion and evacuation. Electron. J. Combin., 16(2), 2009. doi:10.37236/75. · Zbl 1169.06002 · doi:10.37236/75
[39] J. Striker and N. Williams. Promotion and rowmotion. European J. Combin., 33(8):1919-1942, 2012. doi:10.1016/j.ejc.2012.05.003. · Zbl 1260.06004 · doi:10.1016/j.ejc.2012.05.003
[40] D. Tamari. The algebra of bracketings and their enumeration. Nieuw Archief voor Wiskunde, 10:131-146, 1962. · Zbl 0109.24502
[41] H. Thomas. An analogue of distributivity for ungraded lattices. Order, 23:249-269, 2006. doi:10.1007/s11083-006-9046-9. · Zbl 1134.06003 · doi:10.1007/s11083-006-9046-9
[42] H. Thomas and N. Williams. Rowmotion in slow motion. Proc. Lond. Math. Soc., 119(5):1149-1178, 2019. doi:10.1112/plms.12251. · Zbl 1459.06010 · doi:10.1112/plms.12251
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.