×

Rowmotion in slow motion. (English) Zbl 1459.06010

Summary: Rowmotion is a simple cyclic action on the distributive lattice of order ideals of a poset: it sends the order ideal \(x\) to the order ideal generated by the minimal elements not in \(x\). It can also be computed in ‘slow motion’ as a sequence of local moves. We use the setting of trim lattices to generalize both definitions of rowmotion, proving many structural results along the way. We introduce a flag simplicial complex (similar to the canonical join complex of a semidistributive lattice) and relate our results to recent work of Barnard by proving that extremal semidistributive lattices are trim. As a corollary, we prove that if \(A\) is a representation finite algebra and mod \(A\) has no cycles, then the torsion classes of \(A\) ordered by inclusion form a trim lattice.

MSC:

06D75 Other generalizations of distributive lattices
06B10 Lattice ideals, congruence relations
05E16 Combinatorial aspects of groups and algebras

Online Encyclopedia of Integer Sequences:

Maximum orbit size of rowmotion on the symmetric group.

References:

[1] D.Armstrong, B.Rhoades and N.Williams, ‘Rational associahedra and noncrossing partitions’, Electron. J. Combin.20 (2013) P54. · Zbl 1295.05051
[2] D.Armstrong, C.Stump and H.Thomas, ‘A uniform bijection between nonnesting and noncrossing partitions’, Trans. Amer. Math. Soc.365 (2013) 4121-4151. · Zbl 1271.05011
[3] E.Barnard, ‘The canonical join complex’, Electron. J. Combin.26 (2019) P1.24. · Zbl 1516.06008
[4] E.Barnard and N.Reading, ‘Coxeter‐biCatalan combinatorics’, J. Algebraic Combin.47 (2018) 241-300. · Zbl 1387.05270
[5] R.Bautista and F.Larrión, ‘Auslander‐Reiten quivers for certain algebras of finite representation type’, J. Lond. Math. Soc.26 (1982) 43-52. · Zbl 0501.16030
[6] F.Bergeron, ‘Combinatorics of \(r\)‐Dyck paths, \(r\)‐Parking functions, and the \(r\)‐Tamari lattices’, Preprint, 2012, arXiv:1202.6269.
[7] F.Bergeron and L.‐F.Préville‐Ratelle, ‘Higher trivariate diagonal harmonics via generalized Tamari posets’, J. Comb.3 (2012) 317-341. · Zbl 1291.05213
[8] G.Birkhoff and O.Frink, ‘Representations of lattices by sets’, Trans. Amer. Math. Soc.64 (1948) 299-316. · Zbl 0032.00504
[9] A.Björner, ‘Shellable and Cohen‐Macaulay partially ordered sets’, Trans. Amer. Math. Soc. Ser. B260 (1980). · Zbl 0441.06002
[10] M.Bodnar, ‘Rational noncrossing partitions for all coprime pairs’, J. Comb.10 (2019) 365-407. · Zbl 1403.05016
[11] M.Bodnar and B.Rhoades, ‘Cyclic sieving and rational Catalan theory’, Electron. J. Combin.23 (2016) P2-4. · Zbl 1335.05020
[12] M.Bousquet‐Mélou, E.Fusy and L.‐F.Préville‐Ratelle, ‘The number of intervals in the \(m\)‐Tamari lattices’, Electron. J. Combin.18 (2012) P31. · Zbl 1262.05005
[13] A.Brouwer, ‘On dual pairs of antichains’, Stichting Mathematisch Centrum. Zuivere Wiskunde (1975) 1-8. · Zbl 0308.05006
[14] A.Brouwer and A.Schrijver, ‘On the period of an operator, defined on antichains’, Stichting Mathematisch Centrum. Zuivere Wiskunde, no. ZW 24/74, 1974. · Zbl 0282.06003
[15] P. J.Cameron and D. G.Fon‐der‐Flaass, ‘Orbits of antichains revisited’, Eur. J. Combin.16 (1995) 545-554. · Zbl 0831.06001
[16] M.Chan, S.Haddadan, S.Hopkins and L.Moci, ‘The expected jaggedness of order ideals’, Forum of Mathematics, Sigma5 (2017) e9. · Zbl 1358.05313
[17] B. A.Davey, W.Poguntke and I.Rival, ‘A characterization of semi‐distributivity’, Algebra Universalis5 (1975) 72-75. · Zbl 0313.06002
[18] B. A.Davey and H. A.Priestly, Introduction to lattices and orders, 2nd ed. (Cambridge University Press, Cambridge, 2002). · Zbl 1002.06001
[19] A.Day, ‘Characterizations of finite lattices that are bounded‐homomorphic images or sublattices of free lattices’, Canad. J. Math31 (1979) 69-78. · Zbl 0432.06007
[20] L.Demonet, O.Iyama, N.Reading, I.Reiten and H.Thomas, ‘Lattice theory of torsion classes’, Preprint, 2017, arXiv:1711.01785.
[21] M. M.Deza and K.Fukuda, ‘Loops of clutters’, Coding theory and design theory (Springer, Berlin1990) 72-92. · Zbl 0723.05114
[22] K.Dilks, O.Pechenik and J.Striker, ‘Resonance in orbits of plane partitions and increasing tableaux’, J. Combin. Theory Ser. A148 (2017) 244-274. · Zbl 1355.05266
[23] K.Dilks, J.Striker and C.Vorland, ‘Increasing labelings, generalized promotion, and rowmotion’, Preprint, 2017, arXiv:1710.07179. · Zbl 1411.05279
[24] P.Duchet, ‘Sur les hypergraphes invariants’, Discrete Math.8 (1974) 269-280. · Zbl 0288.05132
[25] D.Einstein, M.Farber, E.Gunawan, M.Joseph, M.Macauley, J.Propp and S.Rubinstein‐Salzedo, ‘Noncrossing partitions, toggles, and homomesies’, Electron. J. Combin.23 (2016) P3-52. · Zbl 1351.05029
[26] D.Einstein and J.Propp, ‘Combinatorial, piecewise‐linear, and birational homomesy for products of two chains’, Preprint, 2013, arXiv:1310.5294.
[27] D. G.Fon‐der‐Flaass, ‘Orbits of antichains in ranked posets’, Eur. J. Combin.14 (1993) 17-22. · Zbl 0777.06002
[28] R.Freese, J.Jezek and J. B.Nation, Free lattices (American Mathematical Society, Providence, RI, 1995). · Zbl 0839.06005
[29] P.Galashin and P.Pylyavskyy, ‘\(R\)‐systems’, Selecta Math.25 (2019) 22. · Zbl 1460.37041
[30] A.Garver and T.McConville, ‘Oriented flip graphs and noncrossing tree partitions’, Glasg. Math. J. (2016) 1-36.
[31] A.Garver and T.McConville, ‘Lattice properties of oriented exchange graphs and torsion classes’, Algebr. Represent. Theory22 (2019) 43-78. · Zbl 1408.16011
[32] D.Grinberg and T.Roby, ‘Iterative properties of birational rowmotion II: rectangles and triangles’, Electron. J. Combin.22 (2015) P3-40. · Zbl 1339.06001
[33] D.Grinberg and T.Roby, ‘Iterative properties of birational rowmotion I: generalities and skeletal posets’, Electron. J. Combin.23 (2016) P1-33. · Zbl 1338.06003
[34] D.Happel, I.Reiten and S.Smalø, ‘Tilting in abelian categories and quasitilted algebras’, Mem. Amer. Math. Soc.120 (1996) viii+88 pp. · Zbl 0849.16011
[35] D.Happel and C. M.Ringel, ‘Directing projective modules’, Arch. Math.60 (1993) 237-246. · Zbl 0795.16007
[36] C.Ingalls and H.Thomas, ‘Noncrossing partitions and representations of quivers’, Compos. Math.145 (2009) 1533-1562. · Zbl 1182.16012
[37] O.Iyama, I.Reiten, H.Thomas and G.Todorov, ‘Lattice structure of torsion classes for path algebras’, Bull. Lond. Math. Soc.47 (2015) 639-650. · Zbl 1397.16011
[38] M.Joseph, ‘Antichain toggling and rowmotion’, Electron. J. Combin.26 (2019) 43. · Zbl 1409.05218
[39] A. N.Kirillov and A. D.Berenstein, ‘Groups generated by involutions, Gelfand-Tsetlin patterns, and combinatorics of Young tableaux’, Algebra i Analiz7 (1995) 92-152. · Zbl 0848.20007
[40] G.Markowsky, ‘The factorization and representation of lattices’, Trans. Amer. Math. Soc.203 (1975) 185-200. · Zbl 0302.06011
[41] G.Markowsky, ‘Primes, irreducibles and extremal lattices’, Order9 (1992) 265-290. · Zbl 0778.06007
[42] T.McConville, ‘Lattice structure of Grid-Tamari orders’, J. Combin. Theory Ser. A148 (2017) 27-56. · Zbl 1355.05276
[43] P.McNamara and H.Thomas, ‘Poset edge‐labellings and left modularity’, Eur. J. Combin.27 (2006) 101-113. · Zbl 1083.06005
[44] H.Mühle, ‘Trimness of closed intervals in Cambrian semilattices’, C. R. Math.354 (2016) 113-120. · Zbl 1376.20041
[45] D. I.Panyushev, ‘On orbits of antichains of positive roots’, Eur. J. Combin.30 (2009) 586-594. · Zbl 1165.06001
[46] L.‐F.Préville‐Ratelle and X.Viennot, ‘The enumeration of generalized Tamari intervals’, Trans. Amer. Math. Soc.369 (2017) 5219-5239. · Zbl 1433.05323
[47] J.Propp and D.Einstein, ‘Piecewise‐linear and birational toggling’, Discrete Math. Theor. Comput. Sci. Proceedings of the 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC, 2014) 513-524. · Zbl 1394.06005
[48] J.Propp and T.Roby, ‘Homomesy in products of two chains’, Electron. J. Combin.22 (2015) P3-4. · Zbl 1319.05151
[49] N.Reading, ‘Clusters, Coxeter‐sortable elements and noncrossing partitions’, Trans. Amer. Math. Soc.359 (2007) 5931-5958. · Zbl 1189.05022
[50] N.Reading, ‘Sortable elements and Cambrian lattices’, Algebra Universalis56 (2007) 411-437. · Zbl 1184.20038
[51] N.Reading, ‘Noncrossing arc diagrams and canonical join representations’, SIAM J. Discrete Math.29 (2015) 736-750. · Zbl 1314.05015
[52] V.Reiner, ‘Non‐crossing partitions for classical reflection groups’, Discrete Math.177 (1997) 195-222. · Zbl 0892.06001
[53] C. M.Ringel, ‘Lattice structure of torsion classes for hereditary Artin algebras’, Nagoya Math. J.231 (2018) 89-100. · Zbl 1425.16010
[54] D. B.Rush, ‘On order ideals of minuscule posets III: The CDE property’, Preprint, 2016, arXiv:1607.08018.
[55] D. B.Rush and X.Shi, ‘On orbits of order ideals of minuscule posets’, J. Algebraic Combin.37 (2013) 545-569. · Zbl 1283.06007
[56] D. B.Rush and K.Wang, ‘On orbits of order ideals of minuscule posets II: Homomesy’, Preprint, 2015, arXiv:1509.08047.
[57] A.Schilling, N. M.Thiéry, G.White and N.Williams, ‘Braid moves in commutation classes of the symmetric group’, Eur. J. Combin.62 (2017) 15-34. · Zbl 1358.05308
[58] L.Shu‐Chung Liu, ‘Left‐modular elements and edge labelings’, PhD Thesis, Department of Mathematics, Michigan State University, East Lansing, MI, 1999.
[59] D.Speyer and H.Thomas, ‘Acyclic cluster algebras revisited’, Algebras, quivers and representations (eds A. B.Buan (ed.), I.Reiten (ed.) and Ø.Solberg (ed.); Springer, Berlin, 2013) 275-298. · Zbl 1316.13035
[60] R. P.Stanley, ‘Promotion and evacuation’, Electron. J. Combin.16 (2009) R9. · Zbl 1169.06002
[61] W. A.Stein et al., ‘Sage Mathematics Software (Version 8.0)’, The Sage Development Team, 2017, http://www.sagemath.org.
[62] J.Striker, ‘The toggle group, homomesy, and the Razumov-Stroganov correspondence’, Electron. J. Combin.22 (2015) P2-57. · Zbl 1319.05015
[63] J.Striker, ‘Rowmotion and generalized toggle groups’, Discrete Math. Theor. Comput. Sci.20 (2018). · Zbl 1401.05315
[64] J.Striker and N.Williams, ‘Promotion and rowmotion’, Eur. J. Combin.33 (2012) 1919-1942. · Zbl 1260.06004
[65] C.Stump, H.Thomas and N.Williams, ‘Cataland: why the fuss?’, Preprint, 2015, arXiv:1503.00710. · Zbl 1440.05034
[66] H.Thomas, ‘An analogue of distributivity for ungraded lattices’, Order23 (2006) 249-269. · Zbl 1134.06003
[67] H.Thomas and N.Williams, ‘Independence posets’, Preprint, 2018, arXiv:1805.00815.
[68] H.Thomas and N.Williams, ‘Trim rowmotion and independence posets Code.sagews’, https://share.cocalc.com/share/bf8ac79b-378f-480d-83bd-efbff4f008f5/Trim
[69] R.Wille, ‘Restructuring lattice theory: an approach based on hierarchies of concepts’, Ordered sets (Springer, Berlin, 1982) 445-470. · Zbl 0491.06008
[70] N.Williams, ‘Cataland’, PhD Thesis, School of Mathematics, University of Minnesota, Minneapolis, MN, 2013.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.