×

A triple product identity for Schur functions. (English) Zbl 0763.33008

The author proves and explores the consequences of a \(q\)-binomial theorem for Schur functions: \[ \prod_{i=1}^ n {(ax_ i)_{\infty} \over (x_ i)_{\infty}} = \sum \left( \prod_{y\in\lambda} {1-aq^{c(y)} \over 1 - q^{h(y)}} \right) q^{n(\lambda)}s_{\lambda}(x_ 1,\ldots,x_ n), \] where the sum is over all partitions \(\lambda\) of length \(\leq n\), \(n(\lambda) = \sum(i-1)\lambda_ i\), \(c(i,j) = j-i\) (the content), and \(h(i,j) = \lambda_ i - i + \lambda_ j - j +1\) (the hook length). Among the corollaries is a generalization of the triple product formula, an expansion of \(\prod_{i=1}^ n(-z_ iq)_{\infty}(-z_ i^{-1})_{\infty}(q)_{\infty}\) in terms of Schur functions.

MSC:

33D10 Basic theta functions (MSC1991)
20C30 Representations of finite symmetric groups
11P82 Analytic theory of partitions
Full Text: DOI

References:

[1] Andrews, G. E., The Theory of Partitions, (Rota, G.-C, Encyclopedia of Mathematics and its Applications, Vol. 2 (1976), Addison-Wesley: Addison-Wesley Reading, MA) · Zbl 0155.09302
[2] G. E. Andrews; G. E. Andrews
[3] Aomoto, K., Jacobi polynomials associated with Selberg’s integral, SIAM J. Math. Anal., 18, 545-549 (1987) · Zbl 0639.33001
[4] Bailey, W. N., Generalized Hypergeometric Series, (Cambridge Mathematical Tract No. 32 (1935), Cambridge Univ. Press: Cambridge Univ. Press London) · Zbl 0011.02303
[5] Bromwich, T. J.L’A, An Introduction to the Theory of Infinite Series, ((1949), Macmillan & Co: Macmillan & Co London) · JFM 36.0922.04
[6] Cauchy, A., (“Œuvres,” 1re Série, Vol. 8 (1893), Gauthier-Villars: Gauthier-Villars Paris), 45
[7] Cauchy, A., Seconde mémoire sur les fonctions dont plusieurs valeurs sont liées entre par une équation linéaire, (“Œuvres,” 1re Série, Vol. 8 (1893), Gauthier-Villars: Gauthier-Villars Paris), 50-55
[8] Dyson, F. J., Missed opportunities, Bull. Amer. Math. Soc., 78, 635-653 (1972) · Zbl 0271.01005
[9] Gasper, G.; Rahman, M., Basic Hypergeometric Series, (Rota, G.-C, Encyclopedia of Mathematics and Its Applications, Vol. 35 (1990), Cambridge Univ. Press: Cambridge Univ. Press London) · Zbl 1129.33005
[10] Gindikin, S. G., Analysis on homogeneous spaces, Russian Math. Surveys, 19, 1-90 (1964) · Zbl 0144.08101
[11] Gross, K. I.; Richards, D. St. R., Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions, Trans. Amer. Math. Soc., 301, 781-811 (1987) · Zbl 0626.33010
[12] Hall, P., The algebra of partitions, (Proceedings, 4th Canadian Math. Congress. Proceedings, 4th Canadian Math. Congress, Banff (1959)), 147-159 · Zbl 0122.03403
[13] Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers, ((1979), Oxford at the Clarendon Press: Oxford at the Clarendon Press London/New York) · Zbl 0020.29201
[14] Herz, C. S., Bessel functions of matrix argument, Ann. of Math., 61, No. 2, 474-523 (1955) · Zbl 0066.32002
[15] Jacobi, G. G.J, Fundamenta nova theoriae functionum ellipticarum, ((1829)). (Gesammelte Werke, Vol. 1 (1881), Reimer: Reimer Berlin), 49-239, reprinted in
[16] Jacobi, C. G., De functionibus alternantibus…, Crelle’s J., 22, 360-371 (1841), [Werke 3, 439—452] · ERAM 022.0687cj
[17] James, A. T., Distributions of matrix variates and latent roots derived from normal samples, Ann. Math. Statist., 35, 475-501 (1964) · Zbl 0121.36605
[18] Littlewood, D. E., The Theory of Group Characters, ((1940), Oxford at the Clarendon Press: Oxford at the Clarendon Press London) · Zbl 0011.25001
[19] Littlewood, D. E.; Richardson, A. R., Group characters and algebra, Philos. Trans. Roy. Soc. London Ser. A, 233, 99-141 (1934) · Zbl 0009.20203
[20] Louck, J. D.; Biedenharn, L. C., A generalization of the Gauss hypergeometric function, J. Math. Anal. Appl., 59, 423-431 (1977) · Zbl 0354.33002
[21] Macdonald, I. G., Symmetric Functions and Hall Polynomials, ((1979), Oxford Univ. Press: Oxford Univ. Press London/New York) · Zbl 0899.05068
[22] Macdonald, I. G., Affine root systems and Dedekind’s η-function, Invent. Math., 15, 91-143 (1972) · Zbl 0244.17005
[23] Macdonald, I. G., A new class of symmetric functions, (Actes 20ème Séminaire Lotharingien (1988), Publ. I.R.M.A: Publ. I.R.M.A Strasbourg), 131-171, 372/s-20 · Zbl 0962.05507
[24] Macdonald, I. G., (Lecture notes from his talk (June 1989), University of Michigan)
[25] Milne, S. C., An elementary proof of the Macdonald identities for \(A_I^{(I)\) · Zbl 0586.33011
[26] Milne, S. C., Summation theorems for basic hypergeometric series of Schur function argument, (U.S.-U.S.S.R. Approximation Theory Conference Proceedings. U.S.-U.S.S.R. Approximation Theory Conference Proceedings, Tampa, Florida (1990)), in press · Zbl 0788.33010
[27] Remmel, J.; Whitney, R., Multiplying Schur functions, J. Algorithms, 5, 471-487 (1984) · Zbl 0557.20008
[28] Schur, I., Über ein Klasse von Matrizen die sich einer gegebenen Matrix zuordnen lassen, Dissertation (1901), [Ges Abhandlungen I, 1-72] · JFM 32.0165.04
[29] Schützenberger, M.-P, La correspondance de Robinson, (Foata, D., Combinatoire et Représentation du Groupe Symétrique. Combinatoire et Représentation du Groupe Symétrique, Strasbourg, 1976. Combinatoire et Représentation du Groupe Symétrique. Combinatoire et Représentation du Groupe Symétrique, Strasbourg, 1976, Lecture Notes in Mathematics, No. 579 (1977), Springer-Verlag: Springer-Verlag New York/Berlin), 59-113 · Zbl 0398.05011
[30] Shukla, D. P., Certain transformations of generalized hypergeometric series, Indian J. Pure Appl. Math., 12, No. 8, 994-1000 (1981) · Zbl 0481.33008
[31] Slater, L. J., Generalized Hypergeometric Functions, ((1966), Cambridge Univ. Press: Cambridge Univ. Press London/New York) · Zbl 0135.28101
[32] Stanley, R. P., Theory and applications of plane partitions, Stud. Appl. Math., 50, 259-279 (1971) · Zbl 0225.05012
[33] Stanley, R. P., Some combinatorial properties of Jack symmetric functions, Adv. in Math., 77, 76-115 (1989) · Zbl 0743.05072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.