×

Almost every path structure is not variational. (English) Zbl 1515.83042

Summary: Given a smooth family of unparameterized curves such that through every point in every direction there passes exactly one curve, does there exist a Lagrangian with extremals being precisely this family? It is known that in dimension 2 the answer is positive. In dimension 3, it follows from the work of Douglas that the answer is, in general, negative. We generalise this result to all higher dimensions and show that the answer is actually negative for almost every such a family of curves, also known as path structure or path geometry. On the other hand, we consider path geometries possessing infinitesimal symmetries and show that path and projective structures with submaximal symmetry dimensions are variational. Note that the projective structure with the submaximal symmetry algebra, the so-called Egorov structure, is not pseudo-Riemannian metrizable; we show that it is metrizable in the class of Kropina pseudo-metrics and explicitly construct the corresponding Kropina Lagrangian.

MSC:

83C10 Equations of motion in general relativity and gravitational theory
60G17 Sample path properties
51A05 General theory of linear incidence geometry and projective geometries
35Q31 Euler equations
22E70 Applications of Lie groups to the sciences; explicit representations
53C22 Geodesics in global differential geometry
20M18 Inverse semigroups
53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)

References:

[1] Alvarez-Paiva, J.-C., Berck, G.: Finsler surfaces with prescribed geodesics, arXiv:1002.0243 (2010)
[2] Anderson, I.; Duchamp, T., On the existence of global variational principles, Am. J. Math., 102, 781-867 (1980) · Zbl 0454.58021 · doi:10.2307/2374195
[3] Anderson, I.; Thompson, G., The inverse problem of the calculus of variations for ordinary differential equations, Mem. Amer. Math. Soc., 98, 473 (1992) · Zbl 0760.49021
[4] Beltrami, E., Resoluzione del problema: riportari i punti di una superficie sopra un piano in modo che le linee geodetische vengano rappresentante da linee rette, Annali di Matematica, 1, 7, 185-204 (1865) · doi:10.1007/BF03198517
[5] Boyko, V., Lokaziuk, O., Popovych, R.: Admissible transformations and Lie symmetries of linear systems of second-order ordinary differential equations, arXiv:2105.05139 (2021)
[6] Bryant, R.; Manno, G.; Matveev, VS, A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields, Math. Ann., 340, 2, 437-463 (2008) · Zbl 1144.53025 · doi:10.1007/s00208-007-0158-3
[7] Bryant, R.; Dunajski, M.; Eastwood, M., Metrisability of two-dimensional projective structures, J. Differ. Geom., 83, 3, 465-499 (2009) · Zbl 1196.53014 · doi:10.4310/jdg/1264601033
[8] Bucataru, I.; Muzsnay, Z., Projective metrizability and formal integrability, SIGMA, 7, 114, 22 (2011) · Zbl 1244.49072
[9] Burns, K.; Matveev, V., Open problems and questions about geodesics, Ergodic Theory Dynam. Syst., 41, 3, 641-684 (2021) · Zbl 1486.53003 · doi:10.1017/etds.2019.73
[10] Busemann, H., Two-dimensional metric spaces with prescribed geodesics, Ann. Math.(2), 40, 1, 129-140 (1939) · JFM 65.0815.01 · doi:10.2307/1968549
[11] Busemann, H., The geometry of geodesics (1955), New York: Academic Press Inc, New York · Zbl 0112.37002
[12] Čap, A.; Žádnik, V., Contact projective structures and chains, Geom. Dedicata, 146, 67-83 (2010) · Zbl 1204.53013 · doi:10.1007/s10711-009-9426-6
[13] Caponio, E.; Javaloyes, MA; Sanchez, M., On the interplay between Lorentzian causality and Finsler metrics of Randers type, Rev. Mat. Iberoam., 27, 3, 919-952 (2011) · Zbl 1229.53070 · doi:10.4171/RMI/658
[14] Caponio, E., Javaloyes, M.A., Sanchez, M.: Wind Finslerian structures: from Zermelo’s navigation to the causality of spacetimes, to appear in Memoirs AMS; arXiv:1407.5494 (2014)
[15] Cartan, E., Sur les variétés à connexion projective, Bull. S.M.F., 52, 205-241 (1924) · JFM 50.0500.02
[16] Casey, S.; Dunajski, M.; Tod, P., Twistor geometry of a pair of second order ODEs, Comm. Math. Phys., 321, 681-701 (2013) · Zbl 1277.53044 · doi:10.1007/s00220-013-1729-7
[17] Cheng, J-H; Marugame, T.; Matveev, VS; Montgomery, R., Chains in CR geometry as geodesics of a Kropina metric, Adv. Math., 350, 973-999 (2019) · Zbl 1420.32025 · doi:10.1016/j.aim.2019.05.004
[18] Darboux, G.: Leçons sur la théorie générale des surfaces, Vol. III, §604-605, Gauthier-Villars, Paris (1894)
[19] Davis, DR, The inverse problem of the calculus of variations in a space of \(n+1\) dimensions, Bull. Amer. Math. Soc., 35, 371-380 (1929) · JFM 55.0293.05 · doi:10.1090/S0002-9904-1929-04754-2
[20] Dini, U., Sopra un problema che si presenta nella teoria generale delle rappresentazioni geografice di una superficie su un’altra, Ann. Math. Ser., 2, 3, 269-293 (1869) · JFM 02.0622.02
[21] Do, T.; Prince, G., New progress in the inverse problem in the calculus of variations, Differ. Geom. Appl., 45, 148-179 (2016) · Zbl 1333.37070 · doi:10.1016/j.difgeo.2016.01.005
[22] Do, T.; Prince, G., The inverse problem in the calculus of variations: new developments, Commun. Math., 29, 1, 131-149 (2021) · Zbl 1487.37072 · doi:10.2478/cm-2021-0008
[23] Douglas, J., Solution of the inverse problem of the calculus of variations, Trans. Amer. Math. Soc., 50, 71-128 (1941) · JFM 67.1038.01 · doi:10.1090/S0002-9947-1941-0004740-5
[24] Dunajski, M.; Eastwood, M., Metrisability of three-dimensional path geometries, Eur. J. Math., 2, 809-834 (2016) · Zbl 1360.53025 · doi:10.1007/s40879-016-0095-3
[25] Eastwood, M., Matveev, V.: Metric connections in projective differential geometry, in: Symmetries and overdetermined systems of partial differential equations, 339-350, IMA Vol. Math. Appl., 144, Springer, New York (2008) · Zbl 1144.53027
[26] Egorov, IP, Collineations of projectively connected spaces, Doklady Akad. Nauk SSSR, 80, 709-712 (1951) · Zbl 0044.37602
[27] Ehlers, J., Pirani, F., Schild, A.: The geometry of free fall and light propagation, in General Relativity, Papers in Honour of J.L. Synge, ed. L. O’Raifertaigh, Oxford: Clarendon Press pp. 63-84 (1972); Republished in General Relativity and Gravity, 44, 1587-1609 (2012) · Zbl 0267.53036
[28] Grifone, J.; Muzsnay, Z., Variational principles for second-order differential equations, Application of the Spencer theory to characterize variational sprays (2000), Singapore: World Scientific Pub, Singapore · Zbl 1023.49027 · doi:10.1142/9789812813596
[29] Helmholtz, H., Über der physikalische Bedeutung des Princips der kleinsten Wirkung, J. Reine Angew. Math., 100, 137-166 (1887) · JFM 18.0941.01 · doi:10.1515/crll.1887.100.137
[30] Kruglikov, B., Point classification of second order ODEs: Tresse classification revisited and beyond (with an appendix by B. Kruglikov and V.Lychagin), Abel Symp, 199-221 (2009), Berlin: Springer, Berlin · Zbl 1180.37029
[31] Kruglikov, B.; Lychagin, V.; Krupka, D.; Saunders, D., Geometry of Differential equations, Handbook of Global Analysis, 725-772 (2008), Amsterdam: Elsevier, Amsterdam · Zbl 1236.58039 · doi:10.1016/B978-044452833-9.50015-2
[32] Kruglikov, B.; Matveev, V., Submaximal metric projective and metric affine structures, Diff. Geom. Appl., 33, 70-80 (2014) · Zbl 1295.53012 · doi:10.1016/j.difgeo.2013.10.005
[33] Kruglikov, B.; Matveev, V., Nonexistence of an integral of the 6th degree in momenta for the Zipoy-Voorhees metric, Phys. Rev. D, 85, 124057 (2012) · doi:10.1103/PhysRevD.85.124057
[34] Kruglikov, B.; The, D., The gap phenomenon in parabolic geometries, Journal für die Reine und Angew, Math., 723, 153-215 (2017) · Zbl 1359.58019
[35] Krupka, D.; Cantrijn, F.; Langerock, B., The Vainberg-Tonti Lagrangian and the Euler-Lagrange mapping, Differential Geometric Methods in Mechanics and Field Theory, 81-90 (2007), Ghent: Gent Academia Press, Ghent
[36] Lang, J., Finsler metrics on surfaces admitting three projective vector fields, Differ. Geom. Appl., 69, 101590 (2020) · Zbl 1436.53016 · doi:10.1016/j.difgeo.2019.101590
[37] Levi-Civita, T., Sulle trasformazioni delle equazioni dinamiche, Ann. Mat., 24, 255-300 (1896) · JFM 27.0603.04 · doi:10.1007/BF02419530
[38] Lie, S.: Untersuchungen über geodätische Kurven. Math. Ann. 20 (1882); Abhandlungen, Sophus Lie Gesammelte.: Band 2, erster Teil, 267-374. Teubner, Leipzig (1935)
[39] Linnemann, N., Read, J.: Constructive Axiomatics in Spacetime Physics Part I: Walkthrough to the Ehlers-Pirani-Schild Axiomatisation, arXiv:2112.14063 (2021)
[40] Matveev, VS, Geodesically equivalent metrics in general relativity, J. Geom. Phys., 62, 3, 675-691 (2012) · Zbl 1248.83018 · doi:10.1016/j.geomphys.2011.04.019
[41] Matveev, V. S.: Two-dimensional metrics admitting precisely one projective vector field, with an appendix by A. Bolsinov V. S. Matveev and G. Pucacco. Math. Ann. 352(4), 865-909 (2012) · Zbl 1237.53013
[42] Matveev, V. S.: On projective equivalence and pointwise projective relation of Randers metrics. Int. J. Math. 23 9(1250093), 14 (2012) · Zbl 1253.53018
[43] Matveev, V. S., Scholz, E.: Light cone and Weyl compatibility of conformal and projective structures. Gen. Relativ. Gravit. 52 7(66), 9 (2020) · Zbl 1460.83007
[44] Pfeifer, Ch, Finsler spacetime geometry in physics, Int. J. Geom. Methods Mod. Phys., 16, Supp. 2, 1941004 (2019) · Zbl 07804529 · doi:10.1142/S0219887819410044
[45] Rossi, O., The lagrangian order-reduction theorem in field theories, Commun. Math. Phys., 362, 107-128 (2018) · Zbl 1397.49008 · doi:10.1007/s00220-018-3129-5
[46] Schur, F., Ueber die deformation der Räume constanten Riemann’schen Krümmungsmaasses, Math. Ann., 27, 2, 163-176 (1886) · JFM 18.0444.02 · doi:10.1007/BF01452055
[47] Sonin, N. Ya.: On the definition of maximal and minimal properties (in Russian). Warsaw Univ. Izvestiya 1-2, 1-68 (1886)
[48] Szilasi, J.; Vattamany, S., On the Finsler-metrizabilities of spray manifolds, Period. Math. Hungar., 44, 81-100 (2002) · Zbl 0997.53056 · doi:10.1023/A:1014928103275
[49] Tabachnikov, S., Remarks on magnetic flows and magnetic billiards, Finsler metrics and a magnetic analog of Hilbert’s fourth problem, Modern dynamical systems and applications, 233-250 (2004), Cambridge: Cambridge Univ Press, Cambridge · Zbl 1148.37308
[50] The, D.: On uniqueness of submaximally symmetric parabolic geometries, arXiv:2107.10500 (2021)
[51] Tresse, A.: Détermination des invariants ponctuels de léquation différentielle ordinaire du second ordre \(y^{\prime \prime } = \omega (x,y,y^{\prime })\). Leipzig. 87 S. gr. \(8^\circ (1896)\)
[52] Veblen, O.; Thomas, TY, The geometry of paths, Trans. Amer. Math. Soc., 25, 4, 551-608 (1923) · JFM 50.0504.02 · doi:10.1090/S0002-9947-1923-1501260-2
[53] Weyl, H.: Zur Infinitisimalgeometrie: Einordnung der projektiven und der konformen Auffasung. Nachrichten von der K. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1921); “Selecta Hermann Weyl”, Birkhäuser Verlag, Basel und Stuttgart (1956)
[54] Weyl, H.: Mathematische Analyse des Raumproblems. Vorlesungen gehalten in Barcelona und Madrid, Berlin etc (1923). Springer. Nachdruck Darmstadt: Wissenschaftliche Buchgesellschaft (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.