×

The critical fugacity for surface adsorption of self-avoiding walks on the honeycomb lattice is \(1+\sqrt{2}\). (English) Zbl 1288.82006

Summary: In 2010, H. Duminil-Copin and S. Smirnov [Ann. Math. (2) 175, No. 3, 1653–1665 (2012; Zbl 1253.82012)] proved a long-standing conjecture of Nienhuis, made in 1982, that the growth constant of self-avoiding walks on the hexagonal (a.k.a. honeycomb) lattice is \(\mu=\sqrt{2+\sqrt{2}}\). A key identity used in that proof was later generalised by Smirnov so as to apply to a general \(O(n)\) loop model with \(n\in[-2,2]\) (the case \(n=0\) corresponding to self-avoiding walks).
We modify this model by restricting to a half-plane and introducing a surface fugacity \(y\) associated with boundary sites (also called surface sites), and obtain a generalisation of Smirnov’s identity. The critical value of the surface fugacity was conjectured by Batchelor and Yung in 1995 to be \(y_{\mathrm c}=1+2/\sqrt{2-n}\). This value plays a crucial role in our generalized identity, just as the value of the growth constant did in Smirnov’s identity.
For the case \(n=0\), corresponding to self-avoiding walks interacting with a surface, we prove the conjectured value of the critical surface fugacity. A crucial part of the proof involves demonstrating that the generating function of self-avoiding bridges of height \(T\), taken at its critical point \(1/\mu\), tends to 0 as \(T\) increases, as predicted from SLE theory.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
60J67 Stochastic (Schramm-)Loewner evolution (SLE)
82B27 Critical phenomena in equilibrium statistical mechanics

Citations:

Zbl 1253.82012

Online Encyclopedia of Integer Sequences:

Decimal expansion of the silver mean, 1+sqrt(2).

References:

[1] Alm S.E., Janson S.: Random self-avoiding walks on one-dimensional lattices. Comm. Stat. Stoch. Models 6(2), 169-212 (1990) · Zbl 0702.60063 · doi:10.1080/15326349908807144
[2] Balian R., Toulouse G.: Critical exponents for transitions with n = −2 components of the order parameter. Phys. Rev. Lett. 20, 544-546 (1973) · doi:10.1103/PhysRevLett.30.544
[3] Batchelor M.T., Bennet-Wood D., Owczarek A.L.: Two-dimensional polymer networks at a mixed boundary: surface and wedge exponents. Eur. Phys. J. B 5(1), 139-142 (1998) · doi:10.1007/s100510050426
[4] Batchelor M.T., Yung C.M.: Exact results for the adsorption of a flexible self-avoiding polymer chain in two dimensions. Phys. Rev. Lett. 74, 2026-2029 (1995) · doi:10.1103/PhysRevLett.74.2026
[5] Beaton, N.R.: The critical surface fugacity of self-avoiding walks on a rotated honeycomb lattice. Journal of Physics A: Mathematical and Theoretical 47(2014), 075003+ · Zbl 1297.82005
[6] Beaton, N.R., Guttmann, A.J., Jensen, I.: A numerical adaptation of SAW identities from the honeycomb to other 2D lattices. J. Phys. A, 45(3), 035201 (18pp) (2012). Arxiv:1110.1141 · Zbl 1246.82082
[7] Beaton, N.R., Guttmann, A.J., Jensen, I.: Two-dimensional self-avoiding walks and polymer adsorption: critical fugacity estimates. J. Phys. A 45(5), 055208 (12pp) (2012). Arxiv:1110.6695 · Zbl 1246.82129
[8] Binder, K.: Critical behaviour at surfaces. In: Phase transitions and critical phenomena, Vol. 8. London: Academic Press, 1983, pp. 1-144 · Zbl 1375.82047
[9] Gennes P.-G.: Exponents for the excluded-volume problem as derived by the Wilson method. Phys. Lett. A 38, 339-340 (1972) · doi:10.1016/0375-9601(72)90149-1
[10] Domany E., Mukamel D., Nienhuis B., Schwimmer A.: Duality relations and equivalences for models with O(N) and cubic symmetry. Nucl. Phys. B 190, 279-287 (1981) · doi:10.1016/0550-3213(81)90559-9
[11] Duminil-Copin, H., Hammond, A.: Self-avoiding walk is sub-ballistic. Comm. Math. Phys. 324(2), 401-423 (2013). Arxiv:1205.0401 · Zbl 1277.82027
[12] Duminil-Copin, H., Smirnov, S.: The connective constant of the honeycomb lattice equals \[{\sqrt{2+\sqrt 2}}\sqrt{2+\sqrt{2}} \]. Ann. Math. 175(3), 1653-1665 (2012). Arxiv:1007.0575 · Zbl 1253.82012
[13] Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge: Cambridge University Press, 2009 · Zbl 1165.05001
[14] Flory, P.: Principles of Polymer Chemistry. New York: Cornell University Press, 1953
[15] Hammersley J.M., Torrie G.M., Whittington S.G.: Self-avoiding walks interacting with a surface. J. Phys. A 15(2), 539-571 (1982) · doi:10.1088/0305-4470/15/2/023
[16] Janse van Rensburg E.J., Orlandini E., Whittingon S.G.: Self-avoiding walks in a slab: rigorous results. J. Phys. A 39(45), 13869-13902 (2006) · Zbl 1106.82014 · doi:10.1088/0305-4470/39/45/003
[17] Kesten H.: On the number of self-avoiding walks. J. Math. Phys. 4, 960-969 (1963) · Zbl 0122.36502 · doi:10.1063/1.1704022
[18] Klazar, M.: On the theorem of Duminil-Copin and Smirnov about the number of self-avoiding walks in the hexagonal lattice. Arxiv:1102.5733 · Zbl 0702.60063
[19] Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal geometry and applications: a jubilee of Benoî t Mandelbrot, Part 2. Proc. Sympos. Pure Math. Vol. 72, Providence, RI: Amer. Math. Soc., 2004, pp. 339-364 · Zbl 1069.60089
[20] Madras, N., Slade, G.: The self-avoiding walk. In: Probability and its Applications. Boston, MA: Birkhäuser Boston Inc., 1993 · Zbl 0780.60103
[21] Nienhuis B.: Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev. Lett. 49, 1062-1065 (1982) · doi:10.1103/PhysRevLett.49.1062
[22] Orr W.J.C.: Statistical treatment of polymer solutions at infinite dilution. Trans. Faraday Soc. 43, 12-27 (1947) · doi:10.1039/tf9474300012
[23] Rychlewski G., Whittington S.G.: Self-avoiding walks and polymer adsorption: low temperature behaviour. J. Stat. Phys. 145(3), 661-668 (2011) · Zbl 1375.82047 · doi:10.1007/s10955-011-0290-z
[24] Smirnov, S.: Discrete complex analysis and probability. In: Proceedings of the International Congress of Mathematicians. Vol. I, New Delhi: Hindustan Book Agency, 2010, pp. 595-621 · Zbl 1251.30049
[25] Stanley H.E.: Dependence of critical properties on dimensionality of spins. Phys. Rev. Lett. 20, 589-593 (1968) · doi:10.1103/PhysRevLett.20.589
[26] Janse van Rensburg, E.J.: The statistical mechanics of interacting walks, polygons, animals and vesicles. In: Oxford Lecture Series in Mathematics and its Applications, Vol. 18. Oxford: Oxford University Press, 2000 · Zbl 0996.82031
[27] Whittington S.G.: Self-avoiding walks terminally attached to an interface. J. Chem. Phys. 63, 779-785 (1975) · doi:10.1063/1.431357
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.