×

Self-avoiding walk is sub-ballistic. (English) Zbl 1277.82027

Summary: We prove that a self-avoiding walk on \(\mathbb Z^d\) is sub-ballistic in any dimension \(d \geq 2\). That is, writing \(||u||\) for the Euclidean norm of \(u \in \mathbb Z^d\), and \(\operatorname{P} _{\mathrm {SAW}_n}\) for the uniform measure on self-avoiding walks \(\gamma : \{0, \dotsc, n\} \to \mathbb Z^d\) for which \(\gamma _{0} = 0\), we show that, for each \(v > 0\), there exists \(\varepsilon >0\) such that, for each \(n \in \mathbb N\), \( \operatorname{P} _{\mathrm {SAW}_n}(\max\{||\gamma_k||:0\leq k \leq n\} \geq vn)\leq e^{-\varepsilon n}\).

MSC:

82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B26 Phase transitions (general) in equilibrium statistical mechanics

References:

[1] Alberts T., Duminil-Copin H.: Bridge decomposition of restriction measures. J. Stat. Phys. 140(3), 467-493 (2010) · Zbl 1197.82055 · doi:10.1007/s10955-010-9999-3
[2] Bauerschmidt, R., Duminil-Copin, H., Goodman, J., Slade, G.: Lectures on self-avoiding walks. In: Ellwood, D., Newman, C., Sidoravicius, V., Werner, W. eds., Lecture notes, in Probability and Statistical Physics in Two and More Dimensions. CMI/AMS - Clay Mathematics Institute Proceedings, Providence, RI: Amer. Math. Soc., 2011 · Zbl 1317.60125
[3] Beaton, N., Bousquet-Mélou, M., De Gier, J., Duminil-Copin, H., Guttmann, A.: The critical fugacity for surface adsorption of self-avoiding walks on the honeycomb lattice is \[{1 + \sqrt{2}}1+\sqrt{2} \]. http://arxiv.org/abs/1109.0358v3 [math-ph]. 2012 · Zbl 1288.82006
[4] Borgs C., Chayes J., King C., Madras N.: Anisotropic self-avoiding walks. J. Math. Phys. 41(3), 1321-1337 (2000) · Zbl 1052.82013 · doi:10.1063/1.533189
[5] Brydges D.C., Imbrie J.Z., Slade G.: Functional integral representations for self-avoiding walk. Probab. Surv. 6, 34-61 (2009) · Zbl 1193.82014 · doi:10.1214/09-PS152
[6] Brydges, D., Slade, G.: Renormalisation group analysis of weakly self-avoiding walk in dimensions four and higher. In: Proceedings of the International Congress of Mathematicians. VolumeIV, New Delhi: Hindustan Book Agency, 2010, pp. 2232-2257 · Zbl 1230.82028
[7] Brydges D., Spencer T.: Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97(1-2), 125-148 (1985) · Zbl 0575.60099 · doi:10.1007/BF01206182
[8] Duminil-Copin, H., Kozma, G., Yadin, A.: Supercritical self-avoiding walks are space-filling, to appear in AIHP, arXiv:1110.3074, 2011 · Zbl 1292.60096
[9] Duminil-Copin H., Smirnov S.: The connective constant of the honeycomb lattice equals \[{\sqrt{2 + \sqrt{2}}}\sqrt{2+\sqrt{2}} \]. Ann. of Math. 175(3), 1653-1665 (2012) · Zbl 1253.82012 · doi:10.4007/annals.2012.175.3.14
[10] Duplantier B.: Fractals in two dimensions and conformal invariance. Phys. D 38(1-3), 71-87 (1989) · doi:10.1016/0167-2789(89)90175-9
[11] Duplantier, B.: Renormalization and conformal invariance for polymers. In: Fundamental problems in statistical mechanics VII (Altenberg, 1989), Amsterdam: North-Holland, 1990, pp. 171-223 · Zbl 1193.82014
[12] Flory, P.: Principles of Polymer Chemistry. Ithaca, NY: Cornell University Press, 1953 · Zbl 0924.60086
[13] Hammersley J.M., Welsh D.J.A.: Further results on the rate of convergence to the connective constant of the hypercubical lattice. Quart. J. Math. Oxford Ser. (2) 13, 108-110 (1962) · Zbl 0123.00304 · doi:10.1093/qmath/13.1.108
[14] Hara T., Slade G.: Critical behaviour of self-avoiding walk in five or more dimensions. Bull. Amer. Math. Soc. (N.S.) 25(2), 417-423 (1991) · Zbl 0728.60103 · doi:10.1090/S0273-0979-1991-16085-4
[15] Hara T., Slade G.: Self-avoiding walk in five or more dimensions. I. The critical behaviour. Commun. Math. Phys. 147(1), 101-136 (1992) · Zbl 0755.60053 · doi:10.1007/BF02099530
[16] Ioffe D.: Ornstein-Zernike behaviour and analyticity of shapes for self-avoiding walks on Zd. Markov Process. Related Fields 4(3), 323-350 (1998) · Zbl 0924.60086
[17] Kesten H.: On the number of self-avoiding walks. J. Math. Phys. 4, 960-969 (1963) · Zbl 0122.36502 · doi:10.1063/1.1704022
[18] Kesten H.: On the number of self-avoiding walks. II. J. Math. Phys. 5, 1128-1137 (1964) · Zbl 0161.37402 · doi:10.1063/1.1704216
[19] Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, Volume 72 of Proc. Sympos. Pure Math., Providence, RI:Amer. Math. Soc., 2004, pp. 339-364 · Zbl 1069.60089
[20] Madras N.: Critical behaviour of self-avoiding walks that cross a square. J. Phys. A 28(6), 1535-1547 (1995) · Zbl 0853.60098 · doi:10.1088/0305-4470/28/6/010
[21] Madras, N., Slade, G.: The self-avoiding walk. Probability and its Applications. Boston, MA: Birkhäuser Boston Inc., 1993 · Zbl 0780.60103
[22] Madras N., Chris Wu C.: Self-avoiding walks on hyperbolic graphs. Combin. Probab. Comput. 14(4), 523-548 (2005) · Zbl 1139.82026 · doi:10.1017/S0963548305006772
[23] Nienhuis B.: Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev. Lett. 49, 1062-1065 (1982) · doi:10.1103/PhysRevLett.49.1062
[24] Nienhuis B.: Coulomb gas description of 2D critical behaviour. J. Stat. Phys. 34, 731-761 (1984) · Zbl 0595.76071 · doi:10.1007/BF01009437
[25] Orr W.J.C.: Statistical treatment of polymer solutions at infinite dilution. Transactions of the Faraday Society 43, 12-27 (1947) · doi:10.1039/tf9474300012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.