×

Analysis of two methods based on Galerkin weak form for fractional diffusion-wave: meshless interpolating element free Galerkin (IEFG) and finite element methods. (English) Zbl 1403.65068

Summary: In this paper we apply a finite element scheme and interpolating element free Galerkin technique for the numerical solution of the two-dimensional time fractional diffusion-wave equation on the irregular domains. The time fractional derivative which has been described in the Caputos sense is approximated by a scheme of order \(\mathcal O(\tau^{3-\alpha})\), \(1<\alpha<2\), and the space derivatives are discretized with finite element and interpolating element free Galerkin techniques. We prove the unconditional stability and obtain an error bound for the two new schemes using the energy method. However we would like to emphasize that the main aim of the current paper is to implement the Galerkin finite element method and interpolating element free Galerkin method on complex domains. Also we present error estimate for both schemes proposed for solving the time fractional diffusion-wave equation. Numerical examples demonstrate the theoretical results and the efficiency of the proposed scheme.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations

Software:

FODE
Full Text: DOI

References:

[1] Du, R.; Cao, W. R.; Sun, Z. Z., A compact difference scheme for the fractional diffusion-wave equation, Appl Math Model, 34, 2998-3007, (2010) · Zbl 1201.65154
[2] Parvizi, M.; Eslahchi, M. R.; Dehghan, M., Numerical solution of fractional advection-diffusion equation with a nonlinear source term, Numer Algorithms, 68, 601-629, (2015) · Zbl 1319.35290
[3] Miller, K. S.; Ross, B., An introductional the fractional calculus and fractional differential equations, (1974), Academic Press New York and London
[4] Momani, S.; Odibat, Z. M., Fractional Green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics, J Appl Math Comput, 24, 167-178, (2007) · Zbl 1134.35093
[5] Oldham, K. B.; Spanier, J., The fractional calculus, (1974), Academic Press New York and London · Zbl 0428.26004
[6] Podulbny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0924.34008
[7] Saadatmandi, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Comput Math Appl, 59, 1326-1336, (2010) · Zbl 1189.65151
[8] Oldham KB, Spanier J. Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. London, UK: Academic Press; 1974. · Zbl 0292.26011
[9] Metzler, R.; Klafter, J., The restaurant at the end of the random walkrecent developments in the description of anomalous transport by fractional dynamics, J Phys A, 37, R161-208, (2004) · Zbl 1075.82018
[10] Bagley, R.; Torvik, P., A theoretical basis for the application of fractional calculus to viscoelasticity, J Rheol, 27, 201-210, (1983) · Zbl 0515.76012
[11] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, J Math Anal Appl, 265, 229-248, (2002) · Zbl 1014.34003
[12] Wess, W., The fractional diffusion equation, J Math Phys, 27, 2782-2785, (1996) · Zbl 0632.35031
[13] Dehghan, M.; Manafian, J.; Saadatmandi, A., The solution of the linear fractional partial differential equations using the homotopy analysis method, Z Naturforsch, 65A, 935-949, (2010)
[14] Dehghan, M.; Safarpoor, M.; Abbaszadeh, M., Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations, J Comput Appl Math, 290, 174-195, (2015) · Zbl 1321.65129
[15] Murillo, J. Q.; Yuste, S. B., An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form, J Comput Nonlinear Dyn, 6, (2011), [Article no. 021014]
[16] Tadjeran, C.; Meerschaert, M. M.; Scheffler, H. P., A second-order accurate numerical approximation for the fractional diffusion equation, J Comput Phys, 213, 205-213, (2006) · Zbl 1089.65089
[17] Yuste, S. B., Weighted average finite difference methods for fractional diffusion equations, J Comput Phys, 216, 264-274, (2006) · Zbl 1094.65085
[18] Yuste, S. B.; Acedo, L., An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J Numer Anal, 42, 5, 1862-1874, (2005) · Zbl 1119.65379
[19] Odibat, Z. M., Computational algorithms for computing the fractional derivatives of functions, Math Comput Simul, 79, 2013-2020, (2009) · Zbl 1161.65319
[20] Schneider, W. R.; Wess, W., Fractional diffusion and wave equations, J Math Phys, 30, 134-144, (1989) · Zbl 0692.45004
[21] Ginoa, M.; Cerbelli, S.; Roman, H. E., Fractional diffusion equation and relaxation in complex viscoelastic materials, Physica A, 191, 449-453, (1992)
[22] Mainardi, F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 7, 9, 1461-1477, (1996) · Zbl 1080.26505
[23] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl Math Lett, 9, 6, 23-28, (1996) · Zbl 0879.35036
[24] Agrawal, O. P., A general solution for the fourth-order fractional diffusion-wave equation, Fract Calc Appl Anal, 3, 1, 1-12, (2000) · Zbl 1111.45300
[25] Agrawal, O. P., A general solution for the fourth-order fractional diffusion-wave equation defined in bounded domain, Comput Struct, 79, 1497-1501, (2001)
[26] Metzler, R.; Klafter, J., Boundary value problems for fractional diffusion equations, Physica A, 278, 107-125, (2000)
[27] Sun, Z. Z.; Wu, X. N., A fully discrete difference scheme for a diffusion-wave system, Appl Numer Math, 56, 193-209, (2006) · Zbl 1094.65083
[28] Gao, G. H.; Sun, Z. Z.; Zhang, H. W., A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J Comput Phys, 259, 33-50, (2014) · Zbl 1349.65088
[29] Zhang, Y. N.; Sun, Z. Z.; Liao, H. L., Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J Comput Phys, 265, 195-210, (2014) · Zbl 1349.65359
[30] Cui, M., Compact alternating direction implicit method for two-dimensional time fractional diffusion equation, J Comput Phys, 231, 2621-2633, (2012) · Zbl 1242.65158
[31] Cui, M., Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation, Numer Algorithm, 62, 383-409, (2013) · Zbl 1264.65143
[32] Zhao, X.; Sun, Z. Z., Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium, J Sci Comput, 62, 1-25, (2014)
[33] Zhao, X.; Sun, Z. Z.; Karniadakis, G. E., Second-order approximations for variable order fractional derivativesalgorithms and applications, J Comput Phys, 293, 184-200, (2015) · Zbl 1349.65092
[34] Yang, J. Y.; Zhao, Y. M.; Liu, N.; Bu, W. P.; Xu, T. L.; Tang, Y. F., An implicit MLS meshless method for 2D time dependent fractional diffusion-wave equation, Appl Math Model, 39, 1229-1240, (2015) · Zbl 1432.65129
[35] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math Comput Simul, 71, 16-30, (2006) · Zbl 1089.65085
[36] Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S., A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J Comput Phys, 293, 142-156, (2015) · Zbl 1349.65504
[37] Jiang, H.; Liu, F.; Turner, I.; Burrag, K., Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain, Comput Math Appl, 64, 3377-3388, (2012) · Zbl 1268.35124
[38] Ford, N. J.; Xiao, J.; Yan, Y., A finite element method for time fractional partial differential equations, Fract Calc Appl Anal, 14, 454-474, (2011) · Zbl 1273.65142
[39] Zhang, H.; Liu, F.; Anh, V., Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl Math Comput, 217, 2534-2545, (2010) · Zbl 1206.65234
[40] Jiang, Y.; Ma, J., High-order finite element methods for time-fractional partial differential equations, J Comput Appl Math, 235, 3285-3290, (2011) · Zbl 1216.65130
[41] Huang, Q.; Huang, G.; Zhan, H., A finite element solution for the fractional advection-dispersion equation, Adv Water Resour, 31, 1578-1589, (2008)
[42] Liu, F.; Zhuang, P.; Turner, I.; Burrage, K.; Anh, V., A new fractional finite volume method for solving the fractional diffusion equation, Appl Math Model, 38, 3871-3878, (2014) · Zbl 1429.65213
[43] Li, C. P.; Ding, H., Higher order finite difference method for the reaction and anomalous-diffusion equation, Appl Math Model, 38, 3802-3821, (2014) · Zbl 1429.65188
[44] Ding, H. F.; Li, C. P.; Chen, Y. Q., High-order algorithms for Riesz derivative and their applications (II), J Comput Phys, 293, 218-237, (2015) · Zbl 1349.65284
[45] Ding, H. F.; Li, C. P., Numerical algorithms for the fractional diffusion-wave equation with reaction term, Abstr Appl Anal, 493406, 15p, (2013) · Zbl 1291.65261
[46] Li, C. P.; Chen, A.; Ye, J., Numerical approaches to fractional calculus and fractional ordinary differential equation, J Comput Phys, 230, 3352-3368, (2011) · Zbl 1218.65070
[47] Li, C. P.; Deng, W., Remarks on fractional derivatives, Appl Math Comput, 187, 777-784, (2007) · Zbl 1125.26009
[48] Deng, W.; Li, C. P., The evolution of chaotic dynamics for fractional unified system, Phys Lett A, 372, 401-407, (2008) · Zbl 1217.37026
[49] Li, C. P.; Dao, X.; Guo, P., Fractional derivatives in complex planes, Nonlinear Anal, 71, 1857-1869, (2009) · Zbl 1173.26305
[50] Li, C. P.; Yan, J. P., The synchronization of three fractional differential systems, Chaos Solitons Fractals, 32, 751-757, (2007)
[51] Qian, A.; Li, C. P.; Agarwal, R. P.; Wong, P. J.Y., Stability analysis of fractional differential system with Riemann-Liouville derivative, Math Comput Model, 52, 862-874, (2010) · Zbl 1202.34020
[52] Li, C. P.; Wang, Y., Numerical algorithm based on Adomian decomposition for fractional differential equations, Comput Math Appl, 57, 1672-1681, (2009) · Zbl 1186.65110
[53] Liu, Q.; Liu, F.; Turner, I.; Anh, V., Finite element approximation for the modified anomalous subdiffusion process, Appl Math Model, 35, 8, 4103-4116, (2011) · Zbl 1221.65257
[54] Zhao, Z.; Li, C. P., A numerical approach to the generalized nonlinear fractional Fokker-Planck equation, Comput Math Appl, 64, 3075-3089, (2012) · Zbl 1268.65140
[55] Zheng Y, Li C. P, Zhao Z. A fully discrete discontinuous Galerkin method for non-linear fractional Fokker-Planck equation. Math Probl Eng 2010;2010:[Article ID 279038]. · Zbl 1202.65157
[56] Fix, G. J.; Roop, J. P., Least squares finite element solution of a fractional order two-point boundary value problem, Comput Math Appl, 48, 1017-1033, (2004) · Zbl 1069.65094
[57] YingJun, J.; JingTang, M., Moving finite element methods for time fractional partial differential equations, Sci China Math, 56, 1287-1300, (2013) · Zbl 1290.65091
[58] Deng, W., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J Numer Anal, 47, 204-226, (2008) · Zbl 1416.65344
[59] Zeng, F.; Li, C. P.; Liu, F.; Turner, I., The use of finite difference/element approximations for solving the time-fractional subdiffusion equation, SIAM J Sci Comput, 35, 6, A2976-A3000, (2013), [25 pages] · Zbl 1292.65096
[60] Zeng, F.; Li, C. P.; Liu, F.; Turner, I., Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J Sci Comput, 37, 1, A55-A78, (2015), [24 pages] · Zbl 1334.65162
[61] Zhuang, P.; Liu, F.; Turner, I.; Gu, Y. T., Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation, Appl Math Model, 38, 3860-3870, (2014) · Zbl 1429.65233
[62] Zhang, N.; Deng, W.; Wu, Y., Finite difference/element method for a two-dimensional modified fractional diffusion equation, Adv Appl Math Mech, 4, 496-518, (2012) · Zbl 1262.65108
[63] Zhang, H.; Liu, F.; Anh, V., Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl Math Comput, 217, 2534-2545, (2010) · Zbl 1206.65234
[64] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations on non-rectangular domains with error estimate, J Comput Appl Math, 286, 211-231, (2015) · Zbl 1315.65086
[65] Zhao, Z.; Li, C. P., Fractional difference/finite element approximations for the time-space fractional telegraph equation, Appl Math Comput, 219, 2975-2988, (2012) · Zbl 1309.65101
[66] Li, C. P.; Zhao, Z. G.; Chen, Y. Q., Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput Math Appl, 62, 855-875, (2011) · Zbl 1228.65190
[67] Zheng, Y.; Li, C. P.; Zhao, Z. G., A note on the finite element method for the space-fractional advection diffusion equation, Comput Math Appl, 59, 1718-1726, (2010) · Zbl 1189.65288
[68] Liu, F.; Zhuang, P.; Turner, I.; Anh, V.; Burrage, K., A semi-alternating direction method for a 2-D fractional Fitzhugh-Nagumo monodomain model on an approximate irregular domain, J Comput Phys, 293, 252-263, (2015) · Zbl 1349.65316
[69] Roop JP. Variational solution of the fractional advection-dispersion equation [Ph.D. Thesis], Clemson University, Clemson, SC, USA, 2004.
[70] Jin B, Lazarov R, Zhou Z. On two schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. arXiv:1404.3800; 2014. · Zbl 1381.65082
[71] McLean, W., Regularity of solutions to a time fractional diffusion equation, ANZIAM J, 52, 02, 123-138, (2010) · Zbl 1228.35266
[72] Belytschko, T.; Lu, Y. Y.; Gu, L., Element free Galerkin methods, Int J Numer Methods Eng, 37, 229-256, (1994) · Zbl 0796.73077
[73] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methodsan overview and recent developments, Comput Methods Appl Mech Eng, 139, 3-47, (1996) · Zbl 0891.73075
[74] Salehi, R.; Dehghan, M., A moving least square reproducing polynomial meshless method, Appl Numer Math, 69, 34-58, (2013) · Zbl 1284.65137
[75] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math Comput, 37, 141-158, (1981) · Zbl 0469.41005
[76] Cheng, Y. M.; Bai, F. N.; Peng, M. J., A novel interpolating element free Galerkin (IEFG) method for two-dimensional elastoplasticity, Appl Math Model, 38, 5187-5197, (2014) · Zbl 1449.74196
[77] Zhang, Z.; Liew, K. M.; Cheng, Y. M.; Lee, Y. Y., Analyzing 2D fracture problems with the improved element free Galerkin method, Eng Anal Bound Elem, 32, 241-250, (2008) · Zbl 1244.74240
[78] Zhang, L. W.; Deng, Y. J.; Liew, K. M.; Cheng, Y. M., The improved complex variable element free Galerkin method for two-dimensional Schrödinger equation, Comput Math Appl, 68, 1093-1106, (2014) · Zbl 1367.35141
[79] Cheng, Y. M.; Li, J., A meshless method with complex variables for elasticity, Acta Phys Sin, 54, 4463-4471, (2005) · Zbl 1202.74163
[80] Cheng, Y. M.; Peng, M., Boundary element free method for elastodynamics, Sci China G, 48, 641-657, (2005)
[81] Zhang, Z.; Hao, S. Y.; Liew, K. M.; Cheng, Y. M., The improved element-free Galerkin method for two-dimensional elastodynamics problems, Eng Anal Bound Elem, 37, 1576-1584, (2013) · Zbl 1287.74055
[82] Zhang, L. W.; Deng, Y. J.; Liew, K. M., An improved element-free Galerkin method for numerical modeling of the biological population problems, Eng Anal Bound Elem, 40, 181-188, (2014) · Zbl 1297.65123
[83] Krongauz, Y.; Belytschko, T., EFG approximation with discontinuous derivatives, Int J Numer Methods Eng, 41, 1215-1233, (1998) · Zbl 0906.73063
[84] Chung, H. J.; Belytschko, T., An error estimate in the EFG method, Comput Mech, 21, 91-100, (1998) · Zbl 0910.73060
[85] Ren, H.; Cheng, Y., The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems, Eng Anal Bound Elem, 36, 873-880, (2012) · Zbl 1352.65539
[86] Lee, C. K.; Zhou, C. E., On error estimation and adaptive refinement for element free Galerkin method. part istress recovery and a posteriori error estimation, Comput Struct, 82, 413-428, (2004)
[87] Lee, C. K.; Zhou, C. E., On error estimation and adaptive refinement for element free Galerkin method. part iiadaptive refinement, Comput Struct, 82, 429-443, (2004)
[88] Ponthot, J. P.; Belytschko, T., Arbitrary Lagrangian-Eulerian formulation for element free Galerkin method, Comput Methods Appl Mech Eng, 152, 19-46, (1998) · Zbl 0961.74079
[89] Gu, L., Moving Kriging interpolation and element-free Galerkin method, Int J Numer Methods Eng, 56, 1-11, (2003) · Zbl 1062.74652
[90] Dai, K. Y.; Liu, G. R.; Lim, K. M.; Gu, Y. T., Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods, Comput Mech, 32, 60-70, (2003) · Zbl 1035.74059
[91] Zheng, B.; Dai, B. D., A meshless local moving Kriging method for two-dimensional solids, Appl Math Comput, 218, 563-573, (2011) · Zbl 1275.74033
[92] Tongsuk, P.; Kanok-Nukulchai, W., Further investigation of element free Galerkin method using moving Kriging interpolation, Int J Comput Methods, 01, 345-365, (2004) · Zbl 1179.74182
[93] Bui, T. Q.; Nguyen, M. N., A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates, Comput Struct, 89, 380-394, (2011)
[94] Bui, T. Q.; Zhang, C., Moving Kriging interpolation-based meshfree method for dynamic analysis of structures, Proc Appl Math Mech, 11, 197-198, (2011)
[95] Bui, T. Q.; Nguyen, M. N.; Zhang, C., A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis, Comput Methods Appl Mech Eng, 200, 1354-1366, (2011) · Zbl 1228.74110
[96] Chen, L.; Liew, K. M., A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems, Comput Mech, 47, 455-467, (2011) · Zbl 1241.80005
[97] Li, H.; Wang, Q. X.; Lam, K. Y., Development of a novel meshless local Kriging (lokriging) method for structural dynamic analysis, Comput Methods Appl Mech Eng, 193, 2599-2619, (2004) · Zbl 1067.74598
[98] Gu, Y. T.; Wang, Q. X.; Lam, K. Y., A meshless local Kriging method for large deformation analyses, Comput Methods Appl Mech Eng, 196, 1673-1684, (2007) · Zbl 1173.74471
[99] Gu, Y. T.; Zhuang, P.; Liu, F., An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation, Comput Model Eng Sci (CMES), 56, 303-334, (2010) · Zbl 1231.65178
[100] Dehghan, M.; Shokri, A., A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Math Comput Simul, 79, 700-715, (2008) · Zbl 1155.65379
[101] Gu, Y. T.; Liu, G. R., A local point interpolation method for static and dynamic analysis of thin beams, Comput Methods Appl Mech Eng, 190, 5515-5528, (2001) · Zbl 1059.74060
[102] Gu, Y. T.; Liu, G. R., A boundary point interpolation method for stress analysis of solids, Comput Mech, 28, 47-54, (2002) · Zbl 1115.74380
[103] Gu, Y. T.; Wang, W.; Zhang, L. C.; Feng, X. Q., An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields, Eng Fract Mech, 78, 175-190, (2011)
[104] Lam, K. Y.; Wang, Q. X.; Li, H., A novel meshless approach local Kriging (lokriging) method with two-dimensional structural analysis, Comput Mech, 33, 235-244, (2004) · Zbl 1067.74074
[105] Zhu, P.; Zhang, L. W.; Liew, K. M., Geometrically nonlinear thermo-mechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation, Compos Struct, 107, 298-314, (2014)
[106] Dai, B. D.; Cheng, J.; Zheng, B. J., Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method, Appl Math Comput, 219, 10044-10052, (2013) · Zbl 1307.80008
[107] Dai, B. D.; Cheng, J.; Zheng, B. J., A moving Kriging interpolation-based meshless local Petrov-Galerkin method for elastodynamic analysis, Int J Appl Mech, 5, 1, 1350011-1350021, (2013)
[108] Dehghan, M.; Salehi, R., A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations, J Comput Appl Math, 268, 93-110, (2014) · Zbl 1293.65128
[109] Li, X. G.; Dai, B. D.; Wang, L. H., A moving Kriging interpolation-based boundary node method for two-dimensional potential problems, Chin Phys B, 19, 12, 120202-120207, (2010)
[110] Taleei, A.; Dehghan, M., Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic, Comput Methods Appl Mech Eng, 278, 479-498, (2014) · Zbl 1423.82009
[111] Pozrikidis C. Introduction to Finite and Spectral Element Methods Using MATLAB. Boca Raton: Chapman & Hall/CRC; 2005. · Zbl 1078.65109
[112] Quarteroni, A.; Valli, A., Numerical approximation of partial differential equations, (1997), Springer-Verlag New York
[113] Thome V. Galerkin finite element methods for parabolic problems. Berlin: Springer-Verlag; 2006. · Zbl 1105.65102
[114] Zhang, X.; Huang, P.; Feng, X.; Wei, L., Finite element method for two-dimensional time-fractional Tricomi-type equations, Numer Methods Partial Differ Equ, 29, 1081-1091, (2013) · Zbl 1276.65060
[115] Wang, J. F.; Sun, F. X.; Cheng, Y. M.; Huang, A. X., Error estimates for the interpolating moving least-squares method, Appl Math Comput, 245, 321-342, (2014) · Zbl 1335.65018
[116] Dehghan, M.; Mohebbi, A., High-order compact boundary value method for the solution of unsteady convection-diffusion problems, Math Comput Simul, 79, 683-699, (2008) · Zbl 1155.65075
[117] Mohebbi, A.; Dehghan, M., The use of compact boundary value method for the solution of two-dimensional Schrödinger equation, J Comput Appl Math, 225, 124-134, (2009) · Zbl 1159.65081
[118] Cui, M., Compact finite difference method for the fractional diffusion equation, J Comput Phys, 228, 7792-7804, (2009) · Zbl 1179.65107
[119] Li, L.; Xu, D.; Luo, M., Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation, J Comput Phys, 255, 471-485, (2013) · Zbl 1349.65456
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.