×

Rival approaches to mathematical modelling in immunology. (English) Zbl 1119.92037

Summary: In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of models considered as candidate models. The authors adopt a multidisciplinary perspective.

MSC:

92C50 Medical applications (general)
93A30 Mathematical modelling of systems (MSC2010)
92C30 Physiology (general)
Full Text: DOI

References:

[1] D.H. Anderson, Compartmental Modeling and Tracer Kinetics, Lecture Notes in Biomathematics, vol. 50, Springer, Berlin, 1983.; D.H. Anderson, Compartmental Modeling and Tracer Kinetics, Lecture Notes in Biomathematics, vol. 50, Springer, Berlin, 1983. · Zbl 0509.92001
[2] Antia, R.; Ganusov, V. V.; Ahmed, R., The role of models in understanding \(\operatorname{CD} 8 +\) T-cell memory, Nat. Rev. Immunol., 5, 101-111 (2005)
[3] Antia, R.; Pilyugin, S. S.; Ahmed, R., Models of immune memory: on the role of cross-reactive stimulation, competition and homeostasis in maintaining immune memory, Proc. Natl. Acad. Sci. U.S.A., 95, 14926-14931 (1998)
[4] Aris, R., The infiltration of lymphocytes and macrophages into a site of infection, (Bell, G.; Perelson, A.; Pimbley, G., Theoretical Immunology (1978), Marcel Dekker: Marcel Dekker New York), 519-535
[5] Armitage, P.; Berry, G.; Matthews, J. N.S., Statistical Methods in Medical Research (2001), Blackwell Science: Blackwell Science Oxford
[6] Asquith, B.; Bangham, C. R.M., An introduction to lymphocyte and viral dynamics: the power and limitations of mathematical analysis, Proc. Roy. Soc. London Ser. B, 270, 1651-1657 (2003)
[7] L.K. Babadzanjanz, P. Krebs, D.R. Sarkissian, A.V. Voitylov, B. Ludewig, G.A. Bocharov, Assessing the statistical distribution function of CD \(8 +\); L.K. Babadzanjanz, P. Krebs, D.R. Sarkissian, A.V. Voitylov, B. Ludewig, G.A. Bocharov, Assessing the statistical distribution function of CD \(8 +\)
[8] Baker, C. T.H.; Bocharov, G. A.; Ford, J. M.; Lumb, P. M.; Norton, S. J.; Paul, C. A.H.; Junt, T.; Krebs, P.; Ludewig, B., Computational approach to parameter estimation and model selection in immunology, J. Comput. Appl. Math., 184, 50-76 (2005) · Zbl 1072.92020
[9] Baker, C. T.H.; Bocharov, G. A.; Paul, C. A.H.; Rihan, F. A., Modelling and analysis of time-lags in some basic patterns of cell proliferation, J. Math. Biol., 37, 341-371 (1998) · Zbl 0908.92026
[10] Baker, C. T.H.; Bocharov, G. A.; Paul, C. A.H.; Rihan, F. A., Computational modelling with functional differential equations: identification, selection and sensitivity, Appl. Numer. Math., 53, 107-129 (2005) · Zbl 1069.65082
[11] C.T.H. Baker, G.A. Bocharov, F.A. Rihan, A report on the use of delay differential equations in numerical modelling in the biosciences, MCCM Report No. 343, Manchester, England, 1999.; C.T.H. Baker, G.A. Bocharov, F.A. Rihan, A report on the use of delay differential equations in numerical modelling in the biosciences, MCCM Report No. 343, Manchester, England, 1999.
[12] Banks, R. B., Growth and Diffusion Phenomena. Mathematical Frameworks and Applications (1994), Springer: Springer Berlin · Zbl 0788.92001
[13] Beauchemin, C.; Samuel, J.; Tuszynski, J., A simple cellular automaton model for influenza A viral infections, J. Theoret. Biol., 232, 223-234 (2005) · Zbl 1442.92153
[14] Bocharov, G. A.; Klenerman, P.; Ehl, S., Modelling the dynamics of LCMV infection in mice: II. Compartmental structure and immunopathology, J. Theoret. Biol., 221, 349-378 (2003) · Zbl 1464.92240
[15] Bocharov, G. A., Modelling the dynamics of LCMV infection in mice: conventional and exhaustive CTL responses, J. Theoret. Biol., 192, 283-308 (1998)
[16] Bocharov, G. A.; Hadeler, K. P., Structured population models, conservation laws, and delay equations, J. Differential Equations., 168, 212-237 (2000) · Zbl 0972.34059
[17] Bocharov, G. A.; Rihan, F. A., Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125, 183-199 (2000) · Zbl 0969.65124
[18] De Boer, R. J.; Perelson, A. S., Towards a general function describing T cell proliferation, J. Theoret. Biol., 175, 567-576 (1995)
[19] De Boer, R. J.; Perelson, A. S., Estimating division and death rates from CFSE data, J. Comput. Appl. Math., 184, 140-164 (2005) · Zbl 1074.92016
[20] Borghans, J. A.; Taams, L. S.; Wauben, M. H.M.; De Boer, R. J., Competition for antigenic sites during T cell proliferation: a mathematical interpretation of in vitro data, Proc. Nat. Acad. Sci. U.S.A., 96, 10782-10787 (1999)
[21] Brú, A.; Albertos, S.; Subiza, J. L.; Garcia-Asenjo, J. L.; Brú, I., The universal dynamics of tumor growth, Biophysical J., 85, 2948-2961 (2003)
[22] Burnham, K. P.; Anderson, D. R., Model Selection and Multimodel Inference—A Practical Information-theoretic Approach (2002), Springer: Springer New York, (corr. third printing, 2004) · Zbl 1005.62007
[23] Casal, A.; Sumen, C.; Reddy, T. E.; Alber, M. S.; Lee, P. P., Agent-based modeling of the context dependency in T cell recognition, J. Theoret. Biol., 236, 376-391 (2005) · Zbl 1442.92028
[24] Chan, C.; Jaroslav Stark, J.; George, A. J.T., The impact of multiple T cell APC encounters and the role of anergy, J. Comput. Appl. Math., 184, 101-120 (2005) · Zbl 1072.92013
[25] Chao, D. L.; Davenport, M. P.; Forrest, S.; Perelson, A. S., A stochastic model of cytotoxic T cell responses, J. Theoret. Biol., 228, 227-240 (2004) · Zbl 1439.92057
[26] Coombs, D.; Goldstein, B., T cell activation: kinetic proofreading, serial engagement and cell adhesion, J. Comput. Appl. Math., 184, 121-139 (2005) · Zbl 1072.92014
[27] Davenport, M. P.; Fazou, C.; McMichael, A. J.; Callan, M. F.C., Clonal selection, clonal senescence, and clonal succession: the evolution of the T cell response to infection with a persistent virus, J. Immunol., 168, 3309-3317 (2002)
[28] Delon, J.; Stoll, S.; Germain, R. N., Imaging of T-cell interactions with antigen presenting cells in culture and in intact lymphoid tissue, Immunity Rev., 189, 51-63 (2002)
[29] Doob, J. L., What is a stochastic process?, Amer. Math. Monthly, 49, 648-653 (1942) · Zbl 0060.28906
[30] Funk, G. A.; Jansen, V. A.; Bonhoeffer, S.; Killingback, T., Spatial models of virus-immune dynamics, J. Theoret. Biol., 233, 221-236 (2005) · Zbl 1442.92163
[31] Fussenegger, M.; Bailey, J. E.; Varner, J., A mathematical model of caspase function in apoptosis, Natur. Biotechnol., 18, 768-774 (2000)
[32] Gammack, D.; Ganguli, S.; Marion, S.; Segovia-Juarez, J.; Kirschner, D. E., Understanding the immune response in tuberculosis using different mathematical models and biological scales, SIAM J. Multiscale Model. Simul., 3, 312-345 (2005)
[33] Ganusov, V. V.; Pilyugin, S. S.; de Boer, R. J.; Murali-Krishna, K.; Ahmed, R.; Antia, R., Quantifying cell turnover using CFSE data, J. Immunol. Methods, 298, 183-200 (2005)
[34] Gardiner, C. W., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (1985), Springer: Springer Berlin · Zbl 0862.60050
[35] Germain, R. M., Illuminating the landscapes of in vivo immunity: insights from dynamic in situ imaging of secondary lymphoid tissues, Immunity, 21, 331-339 (2004)
[36] Goldstein, B.; Faeder, J. R.; Hlavacek, W. S., Mathematical and computational models of immune-receptor signalling, Natur. Rev. Immunol., 4, 445-456 (2004)
[37] Grossman, Z., What did mathematical models contribute to AIDS research?, Trends Ecology Evolution, 16, 468-469 (2001), (Review of M.A. Nowak, R.M. May, Virus Dynamics. Mathematical Principles of Immunology and Virology, Oxford Univerity Press, Oxford, 2000)
[38] Grossman, Z., Mathematical modeling of thymopoiesis in HIV infection: real data, virtual data, and data interpretation, Clin. Immunol., 107, 137-139 (2003)
[39] Grossman, Z.; Min, B.; Meier-Schellersheim, M.; Paul, W. E., Concomitant regulation of T-cell activation and homeostasis, Natur. Rev. Immunol., 4, 387-395 (2004)
[40] Grossman, Z.; Paul, W. E., Autoreactivity, dynamic tuning and selectivity, Curr. Opin. Immunol., 13, 687-698 (2001)
[41] Guckenheimer, J.; Oster, G.; Ipaktchi, A., The dynamics of density dependent population models, J. Math. Biol., 4, 101-147 (1977) · Zbl 0379.92016
[42] Hansen, M. H.; Yu, B., Model selection and the principle of minimum description link, J. Amer. Statist. Assoc., 96, 446-774 (2001) · Zbl 1017.62004
[43] Hassell, M. P., The Spatial and Temporal Dynamics of Host-Parasitoid Interactions (2000), Oxford University Press: Oxford University Press Oxford
[44] Heidelberger, M.; Kendall, F. E., The precipitin reaction between type III pneumococcus polysaccharide and homologous antibody: III. A quantitative study and a theory of the reaction mechanism, J. Exp. Med., 61, 563-591 (1935)
[45] Jacquez, J. A.; Simon, C. P., Qualitative theory of compartmental systems with lags, Math. Biosci., 180, 329-362 (2002) · Zbl 1033.92002
[46] R.E. Kalman, New developments in systems theory relevant to biology, in: M.D. Mesarović, (Ed.), Systems Theory and Biology, Springer, Berlin, 1968, pp. 222-232.; R.E. Kalman, New developments in systems theory relevant to biology, in: M.D. Mesarović, (Ed.), Systems Theory and Biology, Springer, Berlin, 1968, pp. 222-232.
[47] Kalman, R. E., Identification of systems from noisy data, Adv. in Math. Sci., 244, 27-51 (1985), (in Russian) · Zbl 0608.93068
[48] Keener, J.; Sneyd, J., Mathematical Physiology (1998), Springer: Springer New York · Zbl 0913.92009
[49] Kesmir, C.; De Boer, R., Clonal exhaustion as a result of immune deviation, Bull. Math. Biol., 65, 359-374 (2003) · Zbl 1334.92234
[50] Kolmogorov, A. N.; Petrovskii, I. G.; Piskunov, N. S., A study of the diffusion equation with increase in the quantity of matter, and its application to a biological problem, Bull. Moscow Univ. Math. Ser. A, 1, 1-25 (1937)
[51] Kousignian, I.; Autran, B.; Chouquet, C.; Calvez, V.; Gomard, E.; Katlama, C.; Riviere, Y.; Costagliola, D., Markov modelling of changes in HIV-specific cytotoxic T-lymphocyte responses with time in untreated HIV-1 infected patients, Statist. Med., 22, 1675-1690 (2003)
[52] Levchenko, A.; Bruck, J.; Sternberg, P. W., Regulatory modules that generate biphasic signal response in biological systems, Syst. Biol., 1, 139-148 (2004)
[53] Lin, X.; Floudas, C. A.; Wang, Y.; Broach, J. R., Theoretical and computational studies of the glucose signaling pathways in yeast using global gene expression data, Biotechnol. Bioeng., 84, 864-886 (2003)
[54] Ljung, L., System Identification: Theory for the User (1987), Prentice-Hall: Prentice-Hall New York · Zbl 0615.93004
[55] Ludewig, B.; Krebs, P.; Junt, T.; Metters, H.; Ford, N. J.; Anderson, R. M.; Bocharov, G., Determining control parameters for dendritic cell-cytotoxic T lymphocyte interaction, European. J. Immunol., 34, 2407-2418 (2004)
[56] T. Luzyanina, S. Mrusek, J. Edwards, D. Roose, S. Ehl, G. Bocharov, Computational analysis of CFSE proliferation assay, 2006, submitted for publication.; T. Luzyanina, S. Mrusek, J. Edwards, D. Roose, S. Ehl, G. Bocharov, Computational analysis of CFSE proliferation assay, 2006, submitted for publication. · Zbl 1113.92021
[57] Marchuk, G. I., Mathematical Models of Immune Response in Infectious Diseases (1997), Kluwer Press: Kluwer Press Dordrecht, (transl. from Russian by G. Kontarev, I. Sidorov) · Zbl 0876.92015
[58] Matzavinos, A.; Chaplain, M. A., Travelling-wave analysis of a model of the immune response to cancer, C.R. Biol., 327, 995-1008 (2004)
[59] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467 (1976) · Zbl 1369.37088
[60] McLean, A. R.; Rosado, M. M.; Agenes, F.; Vascocellos, R.; Freitas, A. A., Resource competition as a mechanism for B cell homeostasis, Proc. Nat. Acad. Sci. U.S.A., 94, 5792-5797 (1997)
[61] M. Meier-Schellersheim, G.A. Bocharov, H. Alon, L.J. Picker, W.P. Paul, Z. Grossman, Characterization of T-cell turnover using in-vivo DNA-labeling data, 2006, submitted for publication.; M. Meier-Schellersheim, G.A. Bocharov, H. Alon, L.J. Picker, W.P. Paul, Z. Grossman, Characterization of T-cell turnover using in-vivo DNA-labeling data, 2006, submitted for publication.
[62] Merril, S. J., Computational models in immunological methods: an historical review, J. Immunol. Methods, 216, 69-92 (1998)
[63] Mohler, R. R.; Bruni, C.; Gandolfi, A., A systems approach to immunology, Proc. IEEE, 68, 964-990 (1980)
[64] Morel, P. A., Mathematical modeling of immunological reactions, Frontiers Biosci., 16, 338-347 (1998)
[65] Murray, J. D., Mathematical Biology I. An Introduction (2004), Springer: Springer Berlin, (corr. 2nd printing)
[66] Nelson, P. W.; Murray, J. D.; Perelson, A. S., A model of HIV-1 pathogenesis that includes an intracellular decay, Math. Biosci., 163, 201-215 (2000) · Zbl 0942.92017
[67] Nelson, P. W.; Perelson, A. S., Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179, 73-94 (2002) · Zbl 0992.92035
[68] Nisbet, R. M.; Gurney, W. S.C., Modelling Fluctuating Populations (1982), Wiley: Wiley Chichester · Zbl 0593.92013
[69] Nowak, M. A.; May, R. M., Virus Dynamics. Mathematical Principles of Immunology and Virology (2000), Oxford Univerity Press: Oxford Univerity Press Oxford · Zbl 1101.92028
[70] Perelson, A. S., Modelling viral and immune system dynamics, Nat. Rev. Immunol., 2, 28-36 (2002)
[71] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 3-44 (1999) · Zbl 1078.92502
[72] A.S. Perelson, P.W. Nelson, Modeling viral infections. An introduction to mathematical modeling in physiology, cell biology, and immunology, Proceedings of the Symposium on Applied Mathematics, vol. 59, American Mathematical Society Providence, RI, 2002, pp. 139-172.; A.S. Perelson, P.W. Nelson, Modeling viral infections. An introduction to mathematical modeling in physiology, cell biology, and immunology, Proceedings of the Symposium on Applied Mathematics, vol. 59, American Mathematical Society Providence, RI, 2002, pp. 139-172. · Zbl 1025.92010
[73] Perelson, A. S.; Ribeiro, R. M., Hepatitis B virus kinetics and mathematical modeling, Sem. Liver Dis., 24, Suppl 1, 11-16 (2004)
[74] Petrovsky, N.; Brusic, V., Computational immunology: the coming of age, Immunol. Cell Biol., 80, 248-254 (2002)
[75] Pitt, M. A.; Myung, J., When a good fit can be bad, Trends Cogn. Sci., 6, 421-425 (2002)
[76] J.W. Polderman, J.C. Willems, Introduction to mathematical systems theory. A behavioral approach, Texts in Applied Mathematics, vol. 26, Springer, New York, 1998.; J.W. Polderman, J.C. Willems, Introduction to mathematical systems theory. A behavioral approach, Texts in Applied Mathematics, vol. 26, Springer, New York, 1998. · Zbl 0940.93002
[77] Rao, C. V.; Wolf, D. M.; Arkin, A. P., Control, exploitation and tolerance of intracellular noise, Nature, 420, 231-237 (2002)
[78] Renshaw, E., Modelling Biological Populations in Space and Time (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0754.92018
[79] Ribeiro, R. M.; Lo, A.; Perelson, A. S., Dynamics of hepatitis B virus infection, Microbes Infect., 4, 829-835 (2002)
[80] Rouzine, I. M.; Murali-Krishna, K.; Ahmed, R., Generals die in friendly fire, or modeling immune response to HIV, J. Comput. Appl. Math., 184, 258-274 (2005) · Zbl 1072.92028
[81] Sidorenko, Y.; Reichl, U., Structured model of influenza virus replication in MDCK cells, Biotechnol. Bioeng., 88, 1-14 (2004)
[82] Sidorov, I. A.; Gee, D.; Dimitrov, D. S., A kinetic model of telomere shortening in infants and adults, J. Theoret. Biol., 226, 169-175 (2004) · Zbl 1439.92040
[83] Smith, J. A.; Martin, L., Do cells cycle?, Proc. Nat. Acad. Sci. U.S.A., 70, 1263-1267 (1973)
[84] Stekel, D. J., The simulation of density-dependent effects in the recirculation of T lymphocytes, Scand. J. Immunol., 47, 426-430 (1998)
[85] Tóth, J.; Li, G.; Rabitz, H.; Tomlin, A. S., The effect of lumping and expanding of kinetic differential equations, SIAM J. Appl. Math., 57, 1531-1556 (1997) · Zbl 0891.34030
[86] Veiga-Fernandes, H.; Walter, U.; Bourgeois, C.; McLean, A.; Rocha, B., Response of naive and memory \(\operatorname{CD} 8 +\) T cells to antigen stimulation in vivo, Natur. Immunol., 1, 47-53 (2000)
[87] Voit, E. O., Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists (2000), Cambridge University Press: Cambridge University Press Cambridge
[88] Webb, G. F.; Blaser, M. J., Dynamics of bacterial phenotype selection in a colonized host, Proc. Nat. Acad. Sci. U.S.A., 99, 3135-3140 (2002) · Zbl 0993.92025
[89] Wodarz, D., Mathematical models of HIV and the immune system, Novartis Found. Sympos., 254, 193-207 (2003)
[90] Wodarz, D.; Klenerman, P.; Nowak, M. A., Dynamics of cytotoxic T-lymphocyte exhaustion, Proc. Roy. Soc. London Ser. B, 265, 191-203 (1998)
[91] Wodarz, D.; Nowak, M. A., Mathematical models of HIV pathogenesis and treatment, Bioessays, 24, 1178-1187 (2002)
[92] Yates, A.; Chan, C. C.; Callard, R. E.; George, A. J.; Stark, J., An approach to modelling in immunology, Brief Bioinform., 2, 245-257 (2001)
[93] Zinkernagel, R. M., Immunology and immunity against infection: general rules, J. Comput. Appl. Math., 184, 4-9 (2005) · Zbl 1073.92024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.