×

Clonal exhaustion as a result of immune deviation. (English) Zbl 1334.92234

Summary: An overwhelming virus infection that spreads within a few days throughout the host can cause deletion of the specific cytotoxic T lymphocytes (CTL). This phenomenon is known as ‘clonal exhaustion’. Current explanations for this phenomenon are ‘clonal’, and consider either the terminal differentiation of the virus-specific CTL to an effector phenotype, or the lack of help and antigen presentation for a specific CTL clone. The virus remains controlled by some other form of immunity in the exhausted state. Candidates are innate immunity (especially NK cells and macrophages) and a T helper type 2 based immune response. Surprisingly, the role of this other form of immunity in causing exhaustion has been ignored so far. Developing a mathematical model, we here investigate the possibility that this inter-clonal immunity is responsible for exhaustion by down regulating the CTL response. The model is based on previously published exhaustion data for Lymphocytic choriomeningitis virus as an in vivo model. We demonstrate that several complicated experiments on clonal exhaustion are consistent with inter-clonal regulation. By interpreting the available data with a mathematical model, we compare this novel mechanism with the mechanisms suggested previously.

MSC:

92C60 Medical epidemiology
92C30 Physiology (general)
Full Text: DOI

References:

[1] Ahmed, R.; Salmi, A.; Butler, L. D.; Chiller, J. M.; Oldstone, M. B. A., Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice, J. Exp. Med., 160, 521-540 (1984) · doi:10.1084/jem.160.2.521
[2] Aichele, P.; Brduscha-Riem, K.; Zinkernagel, R. M.; Hengartner, H.; Pircher, H., T cell priming versus T cell tolerance induced by synthetic peptides, J. Exp. Med., 182, 261-266 (1995) · doi:10.1084/jem.182.1.261
[3] Aichele, P.; Kyburz, D.; Ohashi, P. S.; Odermatt, B.; Zinkernagel, R. M.; Hengartner, H.; Pircher, H., Peptide-induced T-cell tolerance to prevent autoimmune diabetes in a transgenic mouse model, Proc. Natl Acad. Sci. U.S.A., 91, 444-448 (1994) · doi:10.1073/pnas.91.2.444
[4] Alexander-Miller, M. A.; Leggatt, G. R.; Sarin, A.; Berzofsky, J. A., Role of antigen, CD8, and cytotoxic T lymphocyte (CTL) avidity in high dose antigen induction of apoptosis of effector CTL, J. Exp. Med., 184, 485-492 (1996) · doi:10.1084/jem.184.2.485
[5] Allan, W.; Tabi, Z.; Cleary, A.; Doherty, P. C., Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4^+ T cells, J. Immunol., 144, 3980-3986 (1990)
[6] Baldridge, J. R.; McGraw, T. S.; Paoletti, A.; Buchmeier, M. J., Antibody prevents the establishment of persistent arenavirus infection in synergy with endogenous T cells, J. Virol., 71, 755-758 (1997)
[7] Battegay, M.; Moskophidis, D.; Rahemtulla, A.; Hengartner, H.; Mak, T. W.; Zinkernagel, R. M., Enhanced establishment of a virus carrier state in adult CD4^+ T-cell-deficient mice, J. Virol., 68, 4700-4704 (1994)
[8] Bocharov, G. A., Modelling the dynamics of LCMV infection in mice: conventional and exhaustive CTL responses, J. Theor. Biol., 192, 283-308 (1998) · doi:10.1006/jtbi.1997.0612
[9] Brundler, M. A.; Aichele, P.; Bachmann, M.; Kitamura, D.; Rajewsky, K.; Zinkernagel, R. M., Immunity to viruses in B cell-deficient mice:^influence of antibodies on virus persistence and on T cell memory, Eur. J. Immunol., 26, 2257-2262 (1996)
[10] Cardin, R. D.; Brooks, J. W.; Sarawar, S. R.; Doherty, P. C., Progressive loss of CD8^+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4^+ T cells, J. Exp. Med., 184, 863-871 (1996) · doi:10.1084/jem.184.3.863
[11] De Boer, R.; Perelson, A., Towards a general function describing T cell proliferation, J. Theor. Biol., 175, 567-576 (1995) · doi:10.1006/jtbi.1995.0165
[12] Effros, R. B.; Pawelec, G., Replicative senescence of T cells:^does the Hayflick Limit lead to immune exhaustion?, Immunol. Today, 18, 450-454 (1997) · doi:10.1016/S0167-5699(97)01079-7
[13] Eigler, A.; Sinha, B.; Hartmann, G.; Endres, S., Taming TNF: strategies to restrain this proinflammatory cytokine, Immunol. Today, 18, 487-492 (1997) · doi:10.1016/S0167-5699(97)01118-3
[14] Gallimore, A.; Glithero, A.; Godkin, A.; Tissot, A. C.; Pluckthun, A.; Elliott, T.; Hengartner, H.; Zinkernagel, R., Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes, J. Exp. Med., 187, 1383-1393 (1998) · doi:10.1084/jem.187.9.1383
[15] Grossman, Z., A new approach to the evolution of the blastic crisis from chronic myelocytic leukemia: dynamic interplay of cellular alterations and a changing microenvironment, EMBO J., 5, 671-677 (1986)
[16] Grossman, Z.; Greenblatt, C. L.; Cohen, I. R., Parasite immunology and lymphocyte population dynamics, J. Theor. Biol., 121, 129-139 (1986)
[17] Guidotti, L. G.; Chisari, F. V., To kill or to cure: options in host defense against viral infection, Curr. Opin. Immunol., 8, 478-483 (1996) · doi:10.1016/S0952-7915(96)80034-3
[18] Horwitz, D. A.; Gray, J. D.; Ohtsuka, K.; Hirokawa, M.; Takahashi, T., The immunoregulatory effects of NK cells: the role of TGF-β and implications for autoimmunity, Immunol. Today, 18, 538-542 (1997) · doi:10.1016/S0167-5699(97)01149-3
[19] Kaech, S. M.; Ahmed, R., Memory CD8^+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells, Nat. Immunol., 2, 415-422 (2001)
[20] Kagi, D.; Hengartner, H., Different roles for cytotoxic T cells in the control of infections with cytopathic versus noncytopathic viruses, Curr. Opin. Immunol., 8, 472-477 (1996) · doi:10.1016/S0952-7915(96)80033-1
[21] Kos, F. J.; Engleman, E. G., Immune regulation: a critical link between NK cells and CTLs, Immunol. Today, 17, 174-176 (1996) · doi:10.1016/0167-5699(96)80616-5
[22] Lehmann-Grube, F.; Krenz, I.; Krahnert, T.; Schwachenwald, R.; Moskophidis, D.; Lohler, J.; Villeda Posada, C. J., Mechanism of recovery from acute virus infection. IV. Questionable role of mononuclear phagocytes in the clearance of lymphocytic choriomeningitis virus from spleens of mice, J. Immunol., 138, 2282-2289 (1987)
[23] Matloubian, M.; Concepcion, R. J.; Ahmed, R., CD4^+ T cells are required to sustain CD8^+ cytotoxic T-cell responses during chronic viral infection, J. Virol., 68, 8056-8063 (1994)
[24] Matzinger, P., Tolerance, danger, and the extended family, Annu. Rev. Immunol., 12, 991-1045 (1994)
[25] Mitchison, N. A., Induction of immunological paralysis in two zones of dosage, Roy. Soc. Proc., 161, 275-292 (1964) · doi:10.1098/rspb.1964.0093
[26] Mo, X. Y.; Tripp, R. A.; Sangster, M. Y.; Doherty, P. C., The cytotoxic T-lymphocyte response to Sendai virus is unimpaired in the absence of λ interferon, J. Virol., 71, 1906-1910 (1997)
[27] Moskophidis, D.; Battegay, M.; Bruendler, M. A.; Laine, E.; Gresser, I.; Zinkernagel, R. M., Resistance of lymphocytic choriomeningitis virus to α/β interferon and to λ interferon, J. Virol., 68, 1951-1955 (1994)
[28] Moskophidis, D.; Battegay, M.; Van den Broek, M.; Laine, E.; Hoffmann-Rohrer, U.; Zinkernagel, R. M., Role of virus and host variables in virus persistence or immunopathological disease caused by a non-cytolytic virus, J. Gen. Virol., 76, 381-391 (1995)
[29] Moskophidis, D.; Laine, E.; Zinkernagel, R. M., Peripheral clonal deletion of antiviral memory CD8^+ T cells, Eur. J. Immunol., 23, 3306-3311 (1993)
[30] Moskophidis, D.; Lechner, F.; Hengartner, H.; Zinkernagel, R. M., MHC class I and non-MHC-linked capacity for generating an anti-viral CTL response determines susceptibility to CTL exhaustion and establishment of virus persistence in mice, J. Immunol., 152, 4976-4983 (1994)
[31] Moskophidis, D.; Lechner, F.; Pircher, H.; Zinkernagel, R. M., Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells, Nature, 362, 758-761 (1993) · doi:10.1038/362758a0
[32] Ou, R.; Zhou, S.; Huang, L.; Moskophidis, D., Critical role for α/β and λ interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells, J. Virol., 75, 8407-8423 (2001) · doi:10.1128/JVI.75.18.8407-8423.2001
[33] Pantaleo, G., Evidence for rapid disappearance of initially expanded HIVspecific CD8^+ T cell clones during primary HIV infection, Proc. Natl Acad. Sci. U.S.A., 94, 9848-9853 (1997) · doi:10.1073/pnas.94.18.9848
[34] Planz, O.; Ehl, S.; Furrer, E.; Horvath, E.; Brundler, M. A.; Hengartner, H.; Zinkernagel, R. M., A critical role for neutralizing-antibody-producing B cells, CD4^+ T cells, and interferons in persistent and acute infections of mice with lymphocytic choriomeningitis virus: implications for adoptive immunotherapy of virus carriers, Proc. Natl Acad. Sci. U.S.A., 94, 6874-6879 (1997) · doi:10.1073/pnas.94.13.6874
[35] Segel, L. A., Controlling the immune system: diffuse feedback via a diffuse informational network, Novartis. Found. Symp., 239, 31-40 (2001) · doi:10.1002/0470846674.ch4
[36] Segel, L. A.; Segel, L. A.; Cohen, I. R., Diffuse Feedback from a Diffuse Informational Network: In the Immune System and Other Distributed Autonomous Systems, Design Principles for the Immune System and Other Distributed Autonomous Systems, 203-226 (2001), Oxford, U.K.: Oxford University Press, Oxford, U.K.
[37] Thomsen, A. R.; Johansen, J.; Marker, O.; Christensen, J. P., Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice, J. Immunol., 157, 3074-3080 (1996)
[38] Thomsen, A. R.; Volkert, M., Studies on the role of mononuclear phagocytes in resistance to acute lymphocytic choriomeningitis virus infection, Scand. J. Immunol., 18, 271-277 (1983)
[39] Tishon, A.; Borrow, P.; Evans, C.; Oldstone, M. B., Virus-induced immunosuppression. 1. Age at infection relates to a selective or generalized defect, Virology, 195, 397-405 (1993) · doi:10.1006/viro.1993.1389
[40] Van den Broek, M. F.; Muller, U.; Huang, S.; Aguet, M.; Zinkernagel, R. M., Antiviral defense in mice lacking both α/β and λ interferon receptors, J. Virol., 69, 4792-4796 (1995)
[41] Van Stipdonk, M. J.; Lemmens, E. E.; Schoenberger, S. P., Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation, Nat. Immunol., 2, 423-429 (2001)
[42] Varadhachary, A. S.; Perdow, S. N.; Hu, C.; Ramanarayanan, M.; Salgame, P., Differential ability of T cell subsets to undergo activation-induced cell death, Proc. Natl Acad. Sci. U.S.A., 94, 5778-5783 (1997) · doi:10.1073/pnas.94.11.5778
[43] Welsh, R. M.; McNally, J. M., Immune deficiency, immune silencing, and clonal exhaustion of T cell responses during viral infections, Curr. Opin. Microbiol., 2, 382-387 (1999) · doi:10.1016/S1369-5274(99)80067-8
[44] Wodarz, D.; Klenerman, P.; Nowak, M. A., Dynamics of cytotoxic T-lymphocyte exhaustion, Proc. R. Soc. Lond. B. Biol. Sci., 265, 191-203 (1998) · doi:10.1098/rspb.1998.0282
[45] Zajac, A. J.; Murali-Krishna, K.; Blattman, J. N.; Ahmed, R., Therapeutic vaccination against chronic viral infection: the importance of cooperation between CD4^+ and CD8^+ T cells, Curr. Opin. Immunol., 10, 444-449 (1998) · doi:10.1016/S0952-7915(98)80119-2
[46] Zheng, L.; Fisher, G.; Miller, R. E.; Peschon, J.; Lynch, D. H.; Lenardo, M. J., Induction of apoptosis in mature T cells by tumour necrosis factor, Nature, 377, 348-351 (1995) · doi:10.1038/377348a0
[47] Zimmermann, C.; Rawiel, M.; Blaser, C.; Kaufmann, M.; Pircher, H., Homeostatic regulation of CD8^+ T cells after antigen challenge in the absence of Fas (CD95), Eur. J. Immunol., 26, 2903-2910 (1996)
[48] Zimmermann, C.; Seiler, P.; Lane, P.; Zinkernagel, R. M., Antiviral immune responses in CTLA4 transgenic mice, J. Virol., 71, 1802-1807 (1997)
[49] Zinkernagel, R. M., Immunology taught by viruses, Science, 271, 173-178 (1996)
[50] Zinkernagel, R. M.; Bachmann, M. F.; Kundig, T. M.; Oehen, S.; Pirchet, H.; Hengartner, H., On immunological memory, Annu. Rev. Immunol., 14, 333-367 (1996) · doi:10.1146/annurev.immunol.14.1.333
[51] Zinkernagel, R. M.; Moskophidis, D.; Kundig, T.; Oehen, S.; Pircher, H.; Hengartner, H., Effector T-cell induction and T-cell memory versus peripheral deletion of T cells, Immunol. Rev., 133, 199-223 (1993) · doi:10.1111/j.1600-065X.1993.tb01517.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.