×

Parity in knot theory and graph-links. (English. Russian original) Zbl 1320.57001

J. Math. Sci., New York 193, No. 6, 809-965 (2013); translation from Sovrem. Mat., Fundam. Napravl. 41, 3-163 (2011).
This monograph contains detailed accounts of two important ideas associated with virtual knots, extracted (in great part) from the broader discussion of virtual knot theory in a recent book by the first two authors [V. O. Manturov and D. P. Ilyutko, Virtual knots. The state of the art. Hackensack, NJ: World Scientific (2013; Zbl 1270.57003)].
The first of these important ideas is the notion of parity, which was introduced by V. O. Manturov [Sb. Math. 201, No. 5, 693–733 (2010; Zbl 1210.57010)]. The origin of this notion lies in an observation of Gauss: if one walks along a classical knot diagram starting at a crossing, then one will encounter an even number of crossings before returning to the starting point. The definition of parity reflects the insight that although Gauss’ observation does not hold for virtual knots (as virtual crossings are not counted), the crossings for which Gauss’ observation fails are of a special type, which does not appear in classical knot theory.
The second of the important ideas is the notion of graph-links, different forms of which were introduced independently by D. P. Ilyutko and V. O. Manturov [J. Knot Theory Ramifications 18, No. 6, 791–823 (2009; Zbl 1189.57006)] and L. Zulli and the reviewer [J. Knot Theory Ramifications 18, No. 12, 1681–1709 (2009; Zbl 1204.57009)]. The interlacement graph of an Euler circuit of a virtual link diagram \(D\) is the graph \(I(D)\) whose vertices are the crossings of \(D\), with two vertices \(v\) and \(w\) connected by an edge in \(I(D)\) if and only if when the Euler circuit is traversed beginning at \(v\), the crossing \(w\) is encountered precisely once before returning to \(v\). Many knot-theoretic ideas regarding virtual link diagrams yield graph-theoretic ideas about interlacement graphs in a natural way; for instance, Reidemeister moves on virtual link diagrams induce corresponding moves on interlacement graphs. The theory of graph-links is the result of extending these images of knot-theoretic ideas from interlacement graphs to general graphs. The monograph closes with two especially interesting extensions of this sort, which provide versions of the odd Khovanov homology for graph-links.

MSC:

57-02 Research exposition (monographs, survey articles) pertaining to manifolds and cell complexes
57M15 Relations of low-dimensional topology with graph theory
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
Full Text: DOI

References:

[1] D. M. Afanas’ev, ”Refining virtual knot invariants by means of parity,” Mat. Sb., 201, No. 6, 3–18 (2010); English.transl.: Sb. Math., 201, No. 6, 785-800(2010). · doi:10.4213/sm7655
[2] D. Afanasiev, ”On a generalization of the Alexander polynomial for long virtual knots,” J. Knot Theory Ramif., 18, No. 10, 1329–1333 (2009). · Zbl 1179.57016 · doi:10.1142/S021821650900752X
[3] D. M. Afanasiev, V. O. Manturov, ”On minimal virtual link diagrams,” 79, No. 3, 301–304 (2009) (Original Russian Text in Dokl. Akad. Nauk, 426, No. 1, 7–10 (2009)). · Zbl 1176.57005
[4] D. M. Afanasiev, V. O. Manturov, ”On virtual crossing number estimates for virtual links,” J. Knot Theory Ramif., 18, No. 6, 757–772 (2009). · Zbl 1183.57002 · doi:10.1142/S021821650900718X
[5] J. W. Alexander, ”Topological invariants of knots and links,” Trans. Am. Math. Soc. AMS, 20, 257–306 (1923).
[6] J. W. Alexander, ”A matrix knot invariant,” Proc. Natl. Acad. Sci. USA, 19, 222–275 (1933). · Zbl 0006.18405 · doi:10.1073/pnas.19.2.272
[7] V. I. Arnold, ”Topological invariants of plane curves and caustics,” Univ. Lect. Ser., 5 (1994).
[8] V. I. Arnold, ”Plane curves, their invariants, perestroikas and classifications,” in: Singularities and Bifurcations, Adv. Soviet Math., AMS, Providence, 21, 33–91 (1994). · Zbl 0864.57027
[9] E. Artin, ”Theorie der Zöpfe,” Abh. Math. Sem. Univ. Hamburg, 4, 27–72 (1925). · JFM 51.0450.01
[10] M. Asaeda, J. Przytycki, A. Sikora, ”Categorification of the Kauffman bracket skein module of I-bundles over surfaces,” Algebr. Geom. Topol., 4, No. 52, 1177–1210 (2004). · Zbl 1070.57008 · doi:10.2140/agt.2004.4.1177
[11] V. G. Bardakov, ”The virutal and universal bradis,” Fund. Math., 184, 1–18 (2004). · Zbl 1078.20036 · doi:10.4064/fm184-0-1
[12] D. Bar-Natan, ”On the Vassiliev knot invariants,” Topology, 34, 423–472 (1995). · Zbl 0898.57001 · doi:10.1016/0040-9383(95)93237-2
[13] D. Bar-Natan, ”On Khovanov’s categorification of the Jones polynomial,” Algebr. Geom., Topol. 2, No. 16, 337–370 (2002). · Zbl 0998.57016 · doi:10.2140/agt.2002.2.337
[14] D. Bar-Natan and S. Garoufalidis, ”On the Melvin–Morton–Rozansky conjecture,” Inv. Math., 125, 103–133 (1996). · Zbl 0855.57004 · doi:10.1007/s002220050070
[15] S. Bigelow, ”Braid groups are linear,” J. Am. Math. Soc., 14, 471–486 (2001). · Zbl 0988.20021 · doi:10.1090/S0894-0347-00-00361-1
[16] S. Bigelow, ”Does the Jones polynomial detect the unknot,” J. Knot Theory Ramif., 11, 493–505 (2002). · Zbl 1003.57017 · doi:10.1142/S0218216502001779
[17] J. S. Birman, Braids, Links and Mapping Class Groups, Princeton Univ. Press Princeton (1975) (Ann. Math. Stud., 1982). · Zbl 0305.57013
[18] J. S. Birman, ”New points of view in knot theory,” Bull. Am. Math. Soc. (N.S.), 28, 283–287 (1993). · Zbl 0785.57001 · doi:10.1090/S0273-0979-1993-00389-6
[19] C. Blanchet, ”An oriented model for Khovanov homology,” J. Knot Theory Ramif., 19, No. 2, 291–312 (2010). · Zbl 1195.57024 · doi:10.1142/S0218216510007863
[20] J. Bloom, ”Odd Khovanov homology is mutation invariant,” Math. Res. Lett., 17, No. 1, 1–10 (2010). · Zbl 1226.57017 · doi:10.4310/MRL.2010.v17.n1.a1
[21] A. Bouchet, ”Circle graph obstructions,” J. Combin. Theory Ser. B., 60, 107–144 (1994). · Zbl 0793.05116 · doi:10.1006/jctb.1994.1008
[22] A. Bouchet, ”Multimatroids. I. Coverings by independent sets,” SIAM J. Discrete Math., 10, No. 4, 626–646 (1997). · Zbl 0886.05042 · doi:10.1137/S0895480193242591
[23] A. Bouchet, ”Unimodularity and circle graphs,” Discrete Math., 66, 203–208 (1987). · Zbl 0647.05039 · doi:10.1016/0012-365X(87)90132-4
[24] A. Bouchet, W. H. Cunningham and J. F. Geelen, ”Principally unimodular skew-symmetric matrices,” Combinatorica, 18, No. 4, 461–486 (1998). · Zbl 0924.05010 · doi:10.1007/s004930050033
[25] M. O. Bourgoin, ”Twisted link theory,” Algebr. Geom. Topol., 8, No. 3, 1249–1279 (2008). · Zbl 1149.57004 · doi:10.2140/agt.2008.8.1249
[26] A. V. Brailov, A. T. Fomenko, ”The topology of integral submanifolds of completely integrable Hamiltonian systems,” Sb. Math., 62, No. 2, 373–383 (1989). · Zbl 0667.58022 · doi:10.1070/SM1989v062n02ABEH003244
[27] W. Burau, ”Über Zopfgruppen und gleichzeitig verdrillte Verkettungen,” Abh. Math. Sem. Univ. Hamburg, 11, 179–186 (1936). · Zbl 0011.17801 · doi:10.1007/BF02940722
[28] G. Cairns and D. Elton, ”The planarity problem for signed Gauss words,” J. Knot Theory Ramif., 2, 359–367 (1993). · Zbl 0821.57010 · doi:10.1142/S0218216593000209
[29] G. Cairns and D. Elton, ”The planarity problem. II,” J. Knot Theory Ramif., 5, 137–144 (1996). · Zbl 0859.57013 · doi:10.1142/S0218216596000102
[30] J. S. Carter, ”Closed curves that never extend to proper maps of disks,” Proc. Am. Math. Soc., 113, No. 3, 879–888 (1991). · Zbl 0733.57012 · doi:10.1090/S0002-9939-1991-1070511-1
[31] J. S. Carter and M. Saito, ”Diagrammatic invariants of knotted curves and surfaces,” unpublished manuscript (1992).
[32] J. S. Carter, S. Kamada and M. Saito, ”Stable equivalence of knots on surfaces,” J. Knot Theory Ramif., 11, 311–322 (2002). · Zbl 1004.57007 · doi:10.1142/S0218216502001639
[33] J. S. Carter, S. Kamada, M. Saito, Surfaces in 4-space, Springer, New York (2004).
[34] J. Cerf, ”Sur les difféomorphismes de la sphère de dimension trois ({\(\Gamma\)}4 = 0),” Lecture Notes in Math., 53, Springer-Verlag, Berlin–New York (1968). · Zbl 0164.24502
[35] A. Champanerkar and I. Kofman, ”Spanning trees and Khovanov homology,” arXiv:math.GT/0607510. · Zbl 1183.57011
[36] S. Chmutov and S. Duzhin, CDBook. Book about chord diagrams. Introduction to Vassiliev Knot Invariants, http://www.pdmi.ras.ru/\(\sim\)duzhin/papers/cdbook.ps.gz .
[37] S. V. Chmutov, S. V. Duzhin and S. K. Lando, ”Vassiliev knot invariants. I, II, III,” Adv. Sov. Math., 21, 117–147 (1994). · Zbl 0956.57009
[38] S. V. Chmutov and S. K. Lando, ”Mutant knots and intersection graphs,” Algebr. Geom. Topol., 7, 1579–1598 (2007). · Zbl 1158.57013 · doi:10.2140/agt.2007.7.1579
[39] M. Chrisman and V. O.Manturov, ”Combinatorial formulae for finite-type invariants via parities,” arXiv:math.GT/1002.0539. · Zbl 1275.57007
[40] D. Clark, S. Morrison and K. Walker, ”Fixing the functoriality of Khovanov homology,” Geom. Topol. Monogr., 13, No. 3, 1499–1582 (2009). · Zbl 1169.57012 · doi:10.2140/gt.2009.13.1499
[41] M. Cohn and A. Lempel, ”Cycle decomposition by disjoint transpositions,” J. Combin. Theory Ser. A, 13, 83–89 (1972). · Zbl 0314.05005 · doi:10.1016/0097-3165(72)90010-6
[42] J. H. Conway, ”An enumeration of knots and links and some of their algebraic properties,” In: Computational Problems in Abstract Algebra (New York, Pergamon Press), 329–358 (1970). · Zbl 0202.54703
[43] H. Crapo and P. Rosenstiehl, ”On lacets and their manifolds,” Discrete Math., 233, No. 1–3, 299–320 (2001). · Zbl 0985.57008 · doi:10.1016/S0012-365X(00)00248-X
[44] M. Dehn, ”Die beiden Kleeblattschlingen,” Math. Ann., 102, 402–413 (1914). · doi:10.1007/BF01563732
[45] M. Dehn, ” Über die Topologie des dreidimensionalen Raumes,” Math. Ann., 69, 137–168 (1910). · JFM 41.0543.01 · doi:10.1007/BF01455155
[46] Yu. V. Drobotukhina, ”An analogue of the Jones polynomial for links in RP3 and a generalization of the Kauffman–Murasugi theorem,” Notas Algebra Anal., 2, No. 3, 171–191 (1990). · Zbl 0713.57005
[47] S. V. Duzhin and M. V. Karev, ”Detecting the orientation of string links by finite type invariants,” Funkts. Anal. Prilozh., 41, No. 3, 48–59 (2007). · Zbl 1159.57003 · doi:10.4213/faa2865
[48] H. A. Dye, ”Detection and characterization of virtual knot diagrams,” Ph.D. Thesis, University of Illinois at Chicago (2003).
[49] H. A. Dye and L. H. Kauffman, ”Virtual knot diagrams and the Witten–Reshetikhin–Turaev invariants,” J. Knot Theory Ramif., 14, No. 8, 1045–1075 (2005). · Zbl 1089.57009 · doi:10.1142/S021821650500424X
[50] H. A. Dye and L. H. Kauffman, ”Minimal surface representation of virtual knots and links,” arXiv:math.GT/0401035v1. · Zbl 1083.57007
[51] H. A Dye and L. H. Kauffman, ”Virtual crossing number and the arrow polynomial,” J. Knot Theory Ramif., 18, No. 10, 1335–1357 (2009). · Zbl 1195.57028 · doi:10.1142/S0218216509007166
[52] H. A. Dye, L. H. Kauffman and V. O. Manturov, ”On two categorifications of the arrow polynomial for virtual knots,” The mathematics of knots, Contributions in the Mathematical and Computational Sciences 1, 95–127 (2010). · Zbl 1221.57016
[53] Sh. Eliahou, L. H. Kauffman and M. Thistletwaite, ”Infinite families of links with trivial Jones polynomial,” Topology 42, 155–169 (2003). · Zbl 1013.57005 · doi:10.1016/S0040-9383(02)00012-5
[54] R. A. Fenn, L. H. Kauffman and V. O. Manturov, ”Virtual knot theory – unsolved problems,” Fund. Math., Proceedings of the Conference ”Knots in Poland-2003” 188, 293–323 (2005). · Zbl 1084.57005
[55] I. S. Filotti, G. L. Miller and J. Reif, ”On determining the genus of a graph in O(v O(g)) steps,” In: Proc. XI Annual Symp. on Theory of Computing, ACM Press, New York 27–37 (1979).
[56] Th. Flemming and B. Mellor, ”Virtual spatial graphs,” Kobe J. Math 24, 57–85 (2007).
[57] A. T. Fomenko, ”The theory of multidimensional integrable hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom,” Adv. Sov. Math., 6, 1–35 (1991). · Zbl 0746.58036
[58] A. T. Fomenko, ”Morse theory of integrable Hamiltonian systems,” Sov. Math. Dokl., f33, No. 2, 502–506 (1986). · Zbl 0623.58009
[59] A. T. Fomenko, ”The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability,” Izv. Math., 29, No. 3, 629–658 (1987). · Zbl 0649.58019 · doi:10.1070/IM1987v029n03ABEH000986
[60] A. T. Fomenko, ”Topological invariants of Hamiltonian systems that are integrable in the sense of Liouville,” Funct. Anal. Appl., 22, No. 4, 286–296 (1988). · Zbl 0697.58021 · doi:10.1007/BF01077420
[61] A. T. Fomenko, ”The symplectic topology of completely integrable Hamiltonian systems,” Russ. Math. Surv., 44, No. 1, 181–219 (1989). · Zbl 0694.58012 · doi:10.1070/RM1989v044n01ABEH002006
[62] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. C. Millett, and A. Ocneanu, ”A new polynomial invariant of knots and links,” Bull. Am. Math. Soc. 12, 239–246 (1985). · Zbl 0572.57002 · doi:10.1090/S0273-0979-1985-15361-3
[63] S. Garoufalidis, ”A conjecture on Khovanov’s invariants,” Fund. Math., 184, 99–101 (2004). · Zbl 1064.57019 · doi:10.4064/fm184-0-7
[64] C. F. Gauss, ”Zur Mathematischen Theorie der electrodynamischen Wirkungen,” Werke Köningl. Gesell. Wiss. Göttingen, 5, 605 (1877).
[65] Mo-Lin Ge, L. H. Kauffman and Yong Zhang, ”Virtual extension of Temperley–Lieb Algebra,” arXiv:math-ph/0610052.
[66] L. Ghier, ”Double occurence words with the same alternance graph,” ARS Combinatorice, 36, 57–64 (1993). · Zbl 0793.05124
[67] A. Gibson, ”Homotopy invariants of Gauss words,” arXiv:math.GT/0902.0062. · Zbl 1242.57013
[68] A. Gibson, PhD thesis.
[69] W. Goldman, ”Invariant functions on Lie groups and Hamiltonian flows of surface group representations,” Invent. Math., 85, 263–302 (1986). · Zbl 0619.58021 · doi:10.1007/BF01389091
[70] C. A. McGordon and J. Luecke, ”Knots are determined by their complements,” J. Am. Math. Soc., 2, No. 2, 371–415 (1989). · Zbl 0678.57005 · doi:10.1090/S0894-0347-1989-0965210-7
[71] M. Goussarov, M. Polyak, and O. Viro, ”Finite type invariants of classical and virtual knots,” Topology, 39, 1045–1068 (2000). · Zbl 1006.57005 · doi:10.1016/S0040-9383(99)00054-3
[72] M. N. Goussarov, ”A new form of the Jones–Conway polynomial for oriented links,” Zap. Nauchn. Sem. S.-Peterburg. Otd. Math. Inst. Steklov.(POMI), 193, Geometry and Topology 1, 4–9 (1991).
[73] W. Haken, ”Theorie der Normalflächen,” Acta Math. Appl. Sin. Engl. Ser., 105, 245–375 (1961). · Zbl 0100.19402
[74] J. Hass and P. Scott, ”Shortening curves on surfaces,” Topology, 33, No. 1, 25–43 (1994). · Zbl 0798.58019 · doi:10.1016/0040-9383(94)90033-7
[75] G. Hemion, The classification of knots and 3-dimensional spaces, Oxford Univ. Press, Oxford (1992). · Zbl 0771.57001
[76] D. Hrencecin, ”On filamentations and virtual knot invariant,” Thesis www.math.uic.edu/\(\sim\)dhren/FINALCOPY.ps . · Zbl 1031.57008
[77] D. Hrencecin and L. H. Kauffman, ”On filamentations and virtual knots,” Topol. Appl., 134, 23–52 (2003). · Zbl 1031.57008 · doi:10.1016/S0166-8641(03)00100-7
[78] A. Hurwitz, ” Über Riemannsche Fläche mit gegebenen Verzweigungspunkten,” Math. Ann., 39, 1–61 (1981). · JFM 23.0429.01 · doi:10.1007/BF01199469
[79] D. P. Ilyutko, ”Framed 4-valent graphs: Euler tours, Gauss vircuits and rotating circuits,” arXiv:math.CO/0911.5504.
[80] D. P. Ilyutko, ”An equivalence between the set of graph-knots and the set of homotopy classes of looped graphs,” arXiv:math.GT/1001.0360. · Zbl 1239.57015
[81] D. P. Ilyutko, ”Framed 4-valent graphs: Euler tours, Gauss circuits and rotating circuits,” Mat. Sb., 202, No. 9, 53–76 (2011). · doi:10.4213/sm7747
[82] D. P. Ilyutko and V. O. Manturov, ”Introduction to graph-link theory,” J. Knot Theory Ramif., 18, No. 6, 791–823 (2009). · Zbl 1189.57006 · doi:10.1142/S0218216509007191
[83] D. P. Ilyutko and V. O. Manturov, ”Graph-links,” Dokl. Akad. Nauk, 428, No. 5, 591–594 (2009); English.transl.: Dokl. Math., 80, No. 2, 739–742 (2009). · Zbl 1256.57007
[84] D. P. Ilyutko and V. O. Manturov, ”Cobordisms of free knots,” Dokl. Akad. Nauk, 429, No. 4, 439–441 (2009); English.transl.: Dokl. Math., 80, No. 3, 1–3 (2009).
[85] D. P. Ilyutko and V. O. Manturov, ”Graph-links,” in: Proceedings of the Advanced Summer School on Knot Theory, Trieste, Series of Knots and Everything, World Scientific, pp. 135–161 (arXiv:math.GT/1001.0384). · Zbl 1256.57007
[86] A. Ishii, N. Kamada, and S. Kamada, ”The virtual magnetic Kauffman bracket skein module and skein relations for the f-polynomial,” J. Knot Theory Ramif., 17, No. 6, 675–688 (2008). · Zbl 1147.57015 · doi:10.1142/S021821650800635X
[87] S. Jablan and R. Sazdanovic, LINKNOT. Knot Theory by Computer, Series on Knots and Everything – Vol. 21, World Scientific (2007).
[88] M. Jacobsson, ”An invariant of link cobordisms from Khovanov’s homology theory,” Algebr. Geom. Topol., 4, 1211–1251 (2004). · Zbl 1072.57018 · doi:10.2140/agt.2004.4.1211
[89] F. Jaeger, L. H. Kauffman, and H. Saleur, ”The Conway polynomial in S 3 and thickened surfaces: a new determinant formulation,” J. Combin. Theory Ser. B, 61, 237–259 (1994). · Zbl 0802.57003 · doi:10.1006/jctb.1994.1047
[90] V. F. R. Jones, ”A polynomial invariant for links via Neumann algebras,” Bull. Am. Math. Soc (N.S.), 129, 103–112 (1985). · Zbl 0564.57006 · doi:10.1090/S0273-0979-1985-15304-2
[91] V. F. R. Jones, ”Hecke algebra representations of braid groups and link polynomials,” Ann. Math., 126, 335–388 (1987). · Zbl 0631.57005 · doi:10.2307/1971403
[92] J. Jonsson, ”On the number of Euler trails in directed graphs,” Math. Scand., 90, 191–214 (2002). · Zbl 1017.05067
[93] S. Kadokami, ”Detecting non-triviality of virtual links,” J. Knot Theory Ramif., 6, 781–819 (2003). · Zbl 1049.57006 · doi:10.1142/S0218216503002780
[94] N. Kamada, ”On the Jones polynomial of checkerboard colorable virtual knots,” Osaka J. Math., 39, No. 2, 325–333 (2002). · Zbl 1007.57005
[95] N. Kamada, ”A relation of Kauffman’s f-polynomials of virtual links,” Topol. Appl., 146-147, 123–132 (2005). · Zbl 1071.57010 · doi:10.1016/j.topol.2003.02.012
[96] N. Kamada and S. Kamada, ”Abstract link diagrams and virtual knots,” J. Knot Theory Ramif., 9, No. 1, 93–109 (2000). · Zbl 0997.57018 · doi:10.1142/S0218216500000049
[97] N. Kamada, S. Nakabo, and S. Satoh, ”A virtualized skein relation for Jones polynomial,” Illinois J. Math., 46, No. 2, 467–475 (2002). · Zbl 1008.57007
[98] S. Kamada, ”Braid presentation of virtual knots and welded knots,” Osaka J. Math., 44, No. 2, 441–458 (2007). · Zbl 1147.57008
[99] L. H. Kauffman, On Knots, Annals of Math Studies, Princeton University Press (1987).
[100] L. H. Kauffman, Knots and Physics, World Scientific, Singapore (1991). · Zbl 0733.57004
[101] L. H. Kauffman, ”State models and the Jones polynomial,” Topology, 26, 395–407 (1987). · Zbl 0622.57004 · doi:10.1016/0040-9383(87)90009-7
[102] L. H. Kauffman, ”Combinatorics and knot theory,” Contemp. Math., 20, 181–200 (1983). · Zbl 0526.57006 · doi:10.1090/conm/020/718142
[103] L. H. Kauffman, ”Link manifolds and periodicity,” Bull. Am. Math. Soc., 79, 570–573 (1973). · Zbl 0258.57019 · doi:10.1090/S0002-9904-1973-13207-0
[104] L. H. Kauffman, ”Virtual knot theory,” Eur. J. Combin., 20, No. 7, 663–690 (1999). · Zbl 0938.57006 · doi:10.1006/eujc.1999.0314
[105] L. H. Kauffman, ”Detecting virtual knots,” Atti. Sem. Mat. Fis., Univ. Modena, Supplemento al vol. IL, 241–282 (2001). · Zbl 1072.57004
[106] L. H. Kauffman, ”Diagrammatic knot theory,” in preparation. · Zbl 1354.57002
[107] L. H. Kauffman, ”A self-linking invariant of virtual knots,” Fund. Math., 184, 135–158 (2004). · Zbl 1064.57004 · doi:10.4064/fm184-0-10
[108] L. H. Kauffman, ”Virtual knots,” talks at MSRI Meeting, January 1997 and AMS meeting at University of Maryland, College Park, March 1997.
[109] L. H. Kauffman and S. Lambropoulou, ”Virtual braids,” Fund. Math., 184, 159–186 (2004). · Zbl 1068.57006 · doi:10.4064/fm184-0-11
[110] L. H. Kauffman and S. Lambropoulou, ”Virtual braids and the L-Move,” J. Knot Theory Ramif., 15, No. 6, 773–811 (2006). · Zbl 1105.57002 · doi:10.1142/S0218216506004750
[111] L. H. Kauffman and V. O. Manturov, ”Virtual biquandles,” Fund. Math., 188, 103–146 (2005). · Zbl 1088.57006 · doi:10.4064/fm188-0-6
[112] L. H. Kaufman and V. O. Manturov, ”Virtual knots and links,” Geometric topology, discrete geometry, and set theory, Collected papers, Tr. Mat. Inst. Steklova, 252, No. 1, 114–133 (2006).
[113] L. H. Kauffman and D. Radford, ”Bi-oriented quantum algebras and a generalized Alexander polynomial for virtual links,” Contemp. Math., 318, 113–140 (2002). · Zbl 1031.57009 · doi:10.1090/conm/318/05548
[114] M. Khovanov, ”A categorification of the Jones polynomial,” Duke Math. J., 101, No. 3, 359–426 (1997). · Zbl 0960.57005 · doi:10.1215/S0012-7094-00-10131-7
[115] M. Khovanov, ”A functor-valued invariant of tangles,” Algebr. Geom. Topol., 2, 665–741 (2002). · Zbl 1002.57006 · doi:10.2140/agt.2002.2.665
[116] M. Khovanov, ”Link homology and Frobenius extensions,” arXiv.math:GT/0411447. · Zbl 1101.57004
[117] M. Khovanov, ”Categorifications of the colored Jones polynomial,” J. Knot Theory Ramif., 14, No. 1, 111–130 (2005). · Zbl 1083.57019 · doi:10.1142/S0218216505003750
[118] M. Khovanov and L. Rozansky, ”Matrix factorizations and link homology,” arXiv.math:GT/0401268. · Zbl 1145.57009
[119] M. Khovanov and L. Rozansky, ”Matrix factorizations and link homology II,” arXiv.math:GT/0505056. · Zbl 1146.57018
[120] M. Khovanov and L. Rozansky, ”Virtual crossings, convolutions and a categorification of the SO(2N) Kauffman polynomial,” arXiv.math:GT/0701333. · Zbl 1182.57009
[121] A. Kotzig, ”Eulerian lines in finite 4-valent graphs and their transformations,” in: Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 219–230 (1968).
[122] D. Krammer, ”Braid groups are linear,” Ann. Math., 2, No. 155, 131–156 (2002). · Zbl 1020.20025 · doi:10.2307/3062152
[123] P. B. Kronheimer and T. S. Mrowka, ”Khovanov homology is an unknot-detector,” arXiv:math.GT/1005.4346. · Zbl 1241.57017
[124] D. Yu. Krylov and V. O. Manturov, ”Parity and relative parity in knot theory,” arXiv:math.GT/1101.0128.
[125] G. Kuperberg, ”What is a virtual link?,” Algebr. Geom. Topol., 3, 587–591 (2003). · Zbl 1031.57010 · doi:10.2140/agt.2003.3.587
[126] M. Las Vergnas, ”Eulerian circuits of 4-valent graphs imbedded in surfaces,” In Algebraic methods in graph theory, Szeged (1978), Colloq. Math. Soc. Janos Bolyai, 25 (North-Holland, Amsterdam–New York), 451–477 (1981).
[127] E. S. Lee, ”The support of the Khovanov’s invariants for alternating knots,” arXiv:math.GT/0201105.
[128] E. S. Lee, ”On Khovanov invariant for alternating links,” arXiv:math.GT/0210213.
[129] S. Lins, B. Richter, and H. Shank, ”The Gauss code problem off the plane,” Aequationes Math., 33, No. 1, 81–95 (1987). · Zbl 0591.05024 · doi:10.1007/BF01836154
[130] L. Lovász and M. Marx, ”A forbidden substructure characterization of Gauss codes,” Acta Sci. Math. (Szeged), 38, No. 1–2, 115–119 (1976), short version: Bull. Am. Math. Soc., 82, No. 1, 121–122 (1976). · Zbl 0344.05112
[131] A. Lowrance, ”Heegaard–Floer homology and Turaev genus,” arXiv:math.GT/0709.0720. · Zbl 1154.57030
[132] O. V. Manturov and V. O. Manturov, ”Free knots and groups,” J. Knot Theory Ramif., 18, No. 2, 181–186 (2009). · Zbl 1195.57018
[133] V. O. Manturov, ”Bifurcations, atoms and knots,” Vestn. Mosk. Univ. Ser. Mat. Mekh 1, 3–8 (2000); English transl.: Moscow Univ. Math. Bull., 55, No. 1, 1–7 (2000). · Zbl 0979.37028
[134] V. O. Manturov, ”Atoms, height atoms, chord diagrams, and knots. Enumeration of atoms of low complexity using Mathematica 3.0,” In: Topological Methods in Hamiltonian Systems Theory, Factorial, Moscow, 203–212 (1998).
[135] V. O. Manturov, ”The bracket semigroup of knots,” Mat. Zametki, 67, No. 4, 549–562 (2000); English transl.: Math. Notes, 67, No. 4, 468–478 (2000). · Zbl 0958.57010 · doi:10.4213/mzm870
[136] V. O. Manturov, Knot theory [in Russian], Moscow–Izhevsk, RCD (2005). · Zbl 1084.57005
[137] V. O. Manturov, ”Invariant polynomials of virtual links,” Tr. Mosk. Mat. Obshch., 65, No. 1, 175–200 (2004). · Zbl 1169.57302
[138] V. O. Manturov, ”On recognition of virtual braids,” Zap. Nauchn. Sem. S.-Peterburg. Otd. Mat. Inst. Steklov (POMI), 299, Geom. Topol., 8, 267–286 (2003); English transl.: J. Math. Sci. (N.Y.), 131, No. 1, 5409–5419 (2005).
[139] V. O. Manturov, ”Invariants of virtual links,” Dokl. Akad. Nauk, 384, No. 1, 11–13 (2002); English transl.: Dokl. Math., 65, No. 3, 329–331 (2002). · Zbl 1197.57014
[140] V. O. Manturov, ”Atoms and minimal diagrams of virtual links,”Dokl. Akad. Nauk 391, No. 2, 166–168 (2003); English transl.: Dokl. Math., 68, No. 1, 37–39 (2003). · Zbl 1125.57300
[141] V. O. Manturov, ”The Khovanov polynomial for virtual knots,” Dokl. Akad. Nauk 398, No. 1, 15–18 (2004); English transl.: Dokl. Math., 69, No. 2, 164–167 (2004).
[142] V. O. Manturov, ”Curves on surfaces, virtual knots, and the Jones–Kauffman polynomial,” Dokl. Akad. Nauk 390, No. 2, 155–157 (2003); English transl.: Dokl. Math., 67, No. 3, 326–328 (2003). · Zbl 1247.57011
[143] V. O. Manturov, ”Finite-type invariants of virtual links and the Jones–Kauffman polynomial,” Dokl. Akad. Nauk 395, No. 1, 18–21 (2004); English transl.: Dokl. Math., 69, No. 2, 164–166 (2004). · Zbl 1282.57018
[144] V. O. Manturov, ”On long virtual knots,” Dokl. Akad. Nauk, 401, No. 5, 595–598 (2005); English transl.: Dokl. Math., 71, No. 2, 253–255 (2005). · Zbl 1272.57005
[145] V. O. Manturov, ”Invariant two–variable polynomials for virtual links,” Usp. Mat. Nauk, 57, No. 5 (347), 141–142 (2002); English transl.: Russ. Math. Surv., 57, No. 5, 997–998 (2002). · doi:10.4213/rm555
[146] V. O. Manturov, ”The Khovanov complex for virtual links,” Fundam. Prikl. Mat., 11, No. 4, 127–152 (2005); English transl.: J. Math. Sci. (N.Y.), 144, No. 5, 4451–4467 (2007).
[147] V. O. Manturov, ”A proof of Vassiliev’s conjecture on the planarity of singular links,” Izv. Ross. Akad. Nauk: Ser. Mat., 69, No. 5, 169–178 (2005); English transl.: Izv. Math., 69, No. 5, 1025–1033 (2005). · Zbl 1122.05030 · doi:10.4213/im659
[148] V. O. Manturov, ”Combinatorial problems in virtual knot theory,” Math. Probl. Cybern., 12, 147–178 (2003).
[149] V. O. Manturov, ”The Khovanov complex and minimal knot diagrams,” Dokl. Akad. Nauk, 406, No. 3, 308–311 (2006); English transl.: Dokl. Math., 73, No. 1, 46–48 (2006). · Zbl 1155.57303
[150] V. O. Manturov, ”Khovanov homology of virtual knots with arbitrary coefficients,” Izv. Ross. Akad. Nauk: Ser. Mat., 71, No. 5, 111–148 (2007); English transl.: Izv. Math., 71, No. 5, 967–999 (2007). · Zbl 1142.57007 · doi:10.4213/im1133
[151] V. O. Manturov, ”Embeddings of 4-valent framed graphs into 2-surfaces,” Dokl. Akad. Nauk, 424, No. 3, 308–310 (2009); English transl.: Dokl. Math., 79, No. 1, 56–58 (2009). · Zbl 1309.05054
[152] V. O. Manturov, ”Additional gradings in Khovanov’s complex for thickened surfaces,” Dokl. Math., 77, No. 3, 368–370 (2008) (Original Russian Text in Dokl. Akad. Nauk, 420, No. 2, 168–171 (2008)). · Zbl 1151.57303
[153] V. O. Manturov, ”Parity and cobordisms of free knots,” Mat. Sb., in press (2011). · Zbl 1246.57019
[154] V. O. Manturov, ”Parity in knot theory,” Sb. Math., 201, No. 5, 65–110 (2010); English transl.: Mat. Sb., 201, No. 5, 693–733 (2010). · Zbl 1210.57010 · doi:10.4213/sm7574
[155] V. O. Manturov, ”Free knots, groups and finite-order invarinats,” Statu Nascendi. · Zbl 1195.57018
[156] V. O. Manturov, Knot theory, CRC Press, Boca Raton (2004). · Zbl 1052.57001
[157] V. O. Manturov, ”Multivariable polynomial invariants for virtual knots and links,” J. Knot Theory Ramif., 12, No. 8, 1131–1144 (2003). · Zbl 1061.57013 · doi:10.1142/S0218216503002962
[158] V. O. Manturov, ”Kauffman-like polynomial and curves in 2-surfaces,” J. Knot Theory Ramif., 12, No. 8, 1145–1153 (2003). · Zbl 1059.57006 · doi:10.1142/S0218216503002974
[159] V. O. Manturov, ”Vassiliev invariants for virtual links, curves on surfaces and the Jones-Kauffman polynomial,” J. Knot Theory Ramif., 14, No. 2, 231–242 (2005). · Zbl 1071.57011 · doi:10.1142/S0218216505003804
[160] V. O. Manturov, ”Long virtual knots and their invariants,” J. Knot Theory Ramif., 13, No. 8, 1029–1039 (2004). · Zbl 1064.57005 · doi:10.1142/S0218216504003639
[161] V. O. Manturov, ”On invariants of virtual links,” Acta Appl. Math., 72, No. 3, 295–309 (2002). · Zbl 1003.57005 · doi:10.1023/A:1016258728022
[162] V. O. Manturov, ”Virtual knots and infinite–dimensional Lie algebras,” Acta Appl. Math., 83, 221–233 (2004). · Zbl 1065.57005 · doi:10.1023/B:ACAP.0000038944.29820.5e
[163] V. O. Manturov, ”Flat hierarchy,” Fund. Math., 188, 147–154 (2005). · Zbl 1088.57009 · doi:10.4064/fm188-0-7
[164] V. O. Manturov, ”Khovanov homology for virtual links with arbitrary coefficients,” J. Knot Theory Ramif., 16, No. 3, 345–377 (2007). · Zbl 1117.57013 · doi:10.1142/S0218216507005336
[165] V. O. Manturov, ”On free knots,” arXiv:math.GT/0901.2214. · Zbl 1261.57006
[166] V. O. Manturov, ”On free knots and links,” arXiv:math.GT/0902.0127. · Zbl 1195.57018
[167] V. O. Manturov, ”Free knots are not invertible,” arXiv:math.GT/0909.2230v2. · Zbl 1195.57018
[168] V. O. Manturov, ”Parity and cobordisms of free knots,” arXiv:math.GT/1001.2728. · Zbl 1273.57008
[169] V. O. Manturov, ”Free knots and parity,” In: Proceedings of the Advanced Summer School on Knot Theory, Trieste, Series of Knots and Everything, World Scientific, pp. 321–345 (arXiv:math.GT/0912.5348v1). · Zbl 1273.57008
[170] V. O. Manturov, ”Additional gradings in Khovanov homology,” Topology and Physics. Dedicated to the Memory of X-S.Lin, Nankai Tracts in Mathematics, World Scientific, Singapore, 266–300 (2008).
[171] V. O. Manturov, ”Embeddings of four-valent framed graphs into 2-surfaces,” The mathematics of knots, Contributions in the Mathematical and Computational Sciences, 1, 209–238 (2010).
[172] A. A. Markoff, ” Über die freie Äquivalenz der geschlossenen Zöpfe,” Sb. Math., 1, 73–78 (1936). · Zbl 0014.04202
[173] S. V. Matveev, Algorithmic Topology and Classification of 3-manifolds, Springer-Verlag, New York (2003). · Zbl 1048.57001
[174] A. McDougall, ”A Diagramless link homology,” arXiv:math.GT/0911.2518.
[175] B. Mellor, ”A few weight systems arising from intersection graphs,” Michigan Math. J., 51, 509–536 (2003). · Zbl 1058.57008 · doi:10.1307/mmj/1070919557
[176] W. Menasco and M. Thistlethwaite, ”A classification of alternating links,” Ann. Math., 138, 113–171 (1993). · Zbl 0809.57002 · doi:10.2307/2946636
[177] Y. Miyazawa, ”Magnetic graphs and an invariant for virtual links,” J. Knot Theory Ramif., 15, No. 10, 1319–1334 (2006). · Zbl 1116.57008 · doi:10.1142/S0218216506005135
[178] Y. Miyazawa, ”A multi-variable polynomial invariant for virtual knots and links,” J. Knot Theory Ramif., 17, No. 11, 1311–1326 (2008). · Zbl 1171.57006 · doi:10.1142/S0218216508006658
[179] G. Moran, ”Chords in a circle and linear algebra over GF(2),” J. Combin. Theory Ser. A, 37, 239–247 (1984). · Zbl 0552.05001 · doi:10.1016/0097-3165(84)90048-7
[180] K. Murasugi, ”The Jones polynomial and classical conjectures in knot theory,” Topology, 26, 187–194 (1987). · Zbl 0628.57004 · doi:10.1016/0040-9383(87)90058-9
[181] C. St. J. A. Nash-Williams, ”Connected detachments of graphs and generalized Euler trails,” J. London Math. Soc. (2) 31, No. 1, 17–29 (1985). · Zbl 0574.05042
[182] S. Nelson, ”Unknotting virtual knots with Gauss diagram forbidden moves,” J. Knot Theory Ramif., 10, No. 6, 931–935 (2001). · Zbl 0997.57016 · doi:10.1142/S0218216501001244
[183] I. Nikonov, ”Khovanov homology of graph-links,” arXiv:math.GT/1005.2812. · Zbl 1258.57004
[184] I. Nikonov, ”Odd Khovanov homology of principally unimodular bipartite graph-links,” arXiv:math.GT/1006.0161. · Zbl 1258.57004
[185] T. Ohtsuki, Quantum invariants. A Study of Knots, 3-manifolds, and their Sets, World Scientific, Singapore (2001). · Zbl 0991.57001
[186] Olof-Petter Östlund, ”Invariants of knot diagrams and relations among Reidemeister moves,” arXiv:math.GT/0005108. · Zbl 0998.57021
[187] P. Ozsváth, J. Rasmussen, and Z. Szab’o, ”Odd Khovanov homology,” arXiv:math.QA/0710.4300. · Zbl 1297.57032
[188] P. Ozsváth and Z. Szabó, ”Holomorphic disks and knot invariants,” Adv. Math., 186, No. 1, 58–116 (2004). · Zbl 1062.57019
[189] M. Polyak and O. Viro, ”Gauss diagram formulae for Vassiliev invariants,” Int. Math. Res. Not., 11, 445–453 (1994). · Zbl 0851.57010 · doi:10.1155/S1073792894000486
[190] J. A. Rasmussen, ”Khovanov homology and the slice genus,” arXiv:math.GT/0402131. · Zbl 1211.57009
[191] J. A. Rasmussen, ”Floer homology and knot complements,” PhD thesis, Harvard University, 2003, arXiv:math.GT/0306378.
[192] J. A. Rasmussen, ”Some differentials on Khovanov–Rozansky homology,” arXiv:math.GT/0607544. · Zbl 1419.57027
[193] R. C. Read and P. Rosenstiehl, ”On the Gauss crossing problem,” Colloq. Math. Soc. Janos Bolyai, North-Holland, Amsterdam, and New York, 843–876 (1976).
[194] K. Reidemeister, Knotentheorie, Springer, Berlin (1932).
[195] S. Satoh, ”Virtual knot presentation of ribbon torus-knots,” J. Knot Theory Ramif., 9, No. 4, 531–542 (2000). · Zbl 0997.57037
[196] J. Sawollek, ”On Alexander–Conway polynomials for virtual knots and links,” J. Knot Theory Ramif., 12, No. 6, 767–779 (2003). · Zbl 1051.57013 · doi:10.1142/S0218216503002743
[197] J. Sawollek, ”An orinetation-sensitive Vassiliev invarinats for virtual knots,” arXiv:math.GT/0203123. · Zbl 1051.57013
[198] A. Shumakovitch, ”Torsion of the Khovanov homology,” arXiv:math.GT/0405474. · Zbl 1297.57022
[199] H. Schubert, ”Die Eindeutige Zerlegbarkeit eines Knotens in Primknoten,” Sitz. ber. SË achs. Akad. Wiss. Leipz. Math.-Nat.wiss. Kl., 3, 57–104 (1949). · Zbl 0031.28602
[200] D. S. Silver and S. G. Williams, ”Alexander groups and virtual links,” J. Knot Theory Ramif., 10, No. 1, 151–160 (2001). · Zbl 0997.57019 · doi:10.1142/S0218216501000792
[201] D. S. Silver and S. G. Williams, ”Alexander groups of long virtual knots,” preprint (2004). · Zbl 1088.57011
[202] E. Soboleva, ”Vassiliev knot invariants coming from Lie algebras and 4-invariants,” J. Knot Theory Ramif., 10, No. 1, 161–169 (2001). · Zbl 0998.57034 · doi:10.1142/S0218216501000809
[203] A. Stoimenov, V. Tchernov, and A. Vdovina, ”The canonical genus of a classical and virtual knot,” Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II, Haifa 2000; Geom. Dedicata, 95, 215–225 (2002). · Zbl 1015.57001
[204] M. Thistlethwaite, ”A spanning tree expansion for the Jones polynonial,” Topology, 26, 297–309 (1987). · Zbl 0622.57003 · doi:10.1016/0040-9383(87)90003-6
[205] M. Thistlethwaite, ”On the Kauffman polynomial of an adequate link,” Invent. Math., 93, No. 2, 285–296 (1988). · Zbl 0645.57007 · doi:10.1007/BF01394334
[206] L. Traldi, ”Binary nullity, Euler circuits and interlace polynomials,” arXiv:math.CO/0903.4405. · Zbl 1227.05168
[207] L. Traldi, ”A bracket polynomial for graphs. II. Links, Euler circuits and marked graphs,” J. Knot Theory Ramif., 19, 547–586 (2010). · Zbl 1192.57008 · doi:10.1142/S0218216510007978
[208] L. Traldi, ”A bracket polynomial for graphs. III. Vertex weights,” arXiv:math.GT, math.CO/0905.4879. · Zbl 1218.57010
[209] L. Traldi, ”A bracket polynomial for graphs, IV. Undirected Euler circuits, graph-links and multiply marked graphs,” arXiv:math.GT, math.CO/1003.1560.
[210] L. Traldi and L. Zulli, ”A bracket polynomial for graphs,” J. Knot Theory Ramif., 18, 1681–1709 (2009). · Zbl 1204.57009 · doi:10.1142/S021821650900766X
[211] V. G. Turaev, ”A simple proof of the Murasugi and Kauffman theorems on alternating links,” Enseignement Mathematique (2) 33, No. 3–4, 203–225 (1987). · Zbl 0668.57009
[212] V. G. Turaev, An Introduction to the Combinatorial Torsion [in Russian], MCNMO (2004).
[213] V. G. Turaev, ”Virtual strings and their cobordisms,” arXiv:math.GT/0311185 · Zbl 1066.57022
[214] V. G. Turaev, ”Algebras of loops on surfaces, algebras of knots, and quantization,” Braid Group, Knot Theory and Statistical Mechanis (C. N. Yang and M. L. Ge, eds), Math. Phys., 9, World Scientific, Singapore, 59–95 (1989).
[215] V. G. Turaev, ”Cobordisms of words,” arXiv:math.CO/0511513v2. · Zbl 1221.57032
[216] V. G. Turaev, ”Topology of words,” Proc. London Math. Soc., 95, No. 3, 360–412 (2007). · Zbl 1145.57018 · doi:10.1112/plms/pdm014
[217] V. G. Turaev, ”Virtual open strings and their cobordisms,” arXiv:math.GT/0311185v5.
[218] V. Turaev, ”Knots and words,” arXiv:math.GT/0506390v1. · Zbl 1118.57009
[219] V. G. Turaev, ”Skein quantization of Poisson algebras of loops on surfaces,” Ann. Sci. École Norm. Sup., 4, No. 24, 635–704 (1991). · Zbl 0758.57011
[220] V. G. Turaev and P. Turner, ”Unoriented topological quantum field theory and link homology,” Algebr. Geom. Topol., 6, 1069–1093 (2006). · Zbl 1134.57004 · doi:10.2140/agt.2006.6.1069
[221] W. T. Tutte, ”A homotopy theorem for matroids I, II,” Trans. Am. Math. Soc., 88, 144–174 (1958). · Zbl 0081.17301
[222] V. A. Vassiliev, ”Cohomology of knot spaces, in Theory of Singularities and its applications,” Adv. Sov. Math., 1, 23–70 (1990).
[223] V. A. Vassiliev, Complements of Discriminants of Smooth Maps: Topology and Applications, Second extended edition, Translations of Math. Monographs, 98, AMS, Providence, RI (1994).
[224] V. A. Vassiliev, ”First-order invariants and first–order cohomology for spaces of embeddings of self-intersecting curves in $ {{\(\backslash\)mathbb{R}}\^n} $ ,” Izv. Ross. Akad. Nauk Ser. Mat. 69, No. 5, 3–52 (2005); English transl.: Izv. Math., 69, No. 5, 865–912 (2005). · doi:10.4213/im654
[225] V. Vershinin, ”On homology of virtual braids and Burau representation,” J. Knot Theory Ramif., 18, No. 5, 795–812 (2001). · Zbl 0997.57020 · doi:10.1142/S0218216501001165
[226] O. Viro, ”Remarks on definition of Khovanov homology,” arXiv:math.GT/0202199. · Zbl 1078.57013
[227] O. Viro, ”Virtual links and orientations of chord diagrams,” In: Proceedings of the Gökova Conference-2005, International Press, 187–212. · Zbl 1108.57007
[228] P. Vogel, Algebraic Structures on Modules of Diagrams, Institut de Mathématiques de Jussieu, Prépublication 32, revised in 1997, http://www.math.jussieu.fr/vogel/ . · Zbl 1221.57015
[229] S. Wehrli, ”Khovanov homology and Conway mutations,” arXiv:math.GT/0301312. · Zbl 1167.57006
[230] S. Wehrli, ”A spanning tree model for the Khovanov homology,” J. Knot Theory Ramif., 17, No. 12, 1561–1574 (2008). · Zbl 1167.57006 · doi:10.1142/S0218216508006762
[231] M. V. Zenkina, V. O. Manturov, ”An invariant of links in a thickened torus,” Zap. Nauchn. Sem., S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 372, Geom. Topol., 11, 5–18 (2009). · Zbl 1280.57011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.