×

Parameter identification in financial market models with a feasible point SQP algorithm. (English) Zbl 1241.91147

Summary: The quickly moving market data in the finance industry requires a frequent parameter identification of the corresponding financial market models. In this paper we apply a special sequential quadratic programming algorithm to the calibration of typical equity market models. As it turns out, the projection of the iterates onto the feasible set can be efficiently computed by solving a semidefinite programming problem. Combining this approach with a Gauss-Newton framework leads to an efficient algorithm which allows to calibrate e.g. Heston’s stochastic volatility model in less than a half second on a usual 3 GHz desktop PC. Furthermore we present an appropriate regularization technique that stabilizes and significantly speeds up computations if the model parameters are chosen to be time-dependent.

MSC:

91G80 Financial applications of other theories
93E11 Filtering in stochastic control theory
90C20 Quadratic programming

Software:

SDPA; Ipopt
Full Text: DOI

References:

[1] Achdou, Y., Pironneau, O.: Computational Methods for Option Pricing. SIAM, Philadelphia (2005) · Zbl 1078.91008
[2] Albrecher, H., Mayer, P., Schoutens, W., Tistaert, J.: The little Heston trap. In: Wilmott Magazine, pp. 83–92 (2007)
[3] Andersen, L., Brotherton-Ratcliffe, R.: The equity option volatility smile: an implicit finite-difference approach. J. Comput. Finance 1(2), 5–32 (1997/98)
[4] Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Political Econ. 81, 637–659 (1973) · Zbl 1092.91524 · doi:10.1086/260062
[5] Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: In: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, vol. 15. SIAM, Philadelphia (1994) · Zbl 0816.93004
[6] Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 3, 463–520 (1999)
[7] Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2000) · Zbl 0958.65071
[8] Fujisawa, K., Kojima, M., Nakata, K., Yamashita, M.: SDPA (SemiDefinite Programming Algorithm) User’s manual–version 6.2.0. Research Report B-308, Dept. Math. and Comp. Sciences, Tokyo Institute of Technology, December 1995
[9] Goldfarb, D., Idnani, A.: A numerically stable method for solving strictly convex quadratic programs. Math. Program. 27, 1–33 (1983) · Zbl 0537.90081 · doi:10.1007/BF02591962
[10] Hedar, A., Fukushima, M.: Hybrid simulated annealing and direct search method for nonlinear unconstrained global optimization. Optim. Methods Softw. 17, 891–912 (2002) · Zbl 1065.90081 · doi:10.1080/1055678021000030084
[11] Herskovits, J.N., Carvalho, L.A.V.: A successive quadratic programming based feasible directions algorithm. In: Bensoussan, A., Lions, J.L. (eds.) Proceedings of the Seventh International Conference on Analysis and Optimization of Systems, Antibes. Lecture Notes in Control and Inform. Sci., vol. 83, pp. 93–101. Springer, Berlin (1986) · Zbl 0597.90079
[12] Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993) · Zbl 1384.35131 · doi:10.1093/rfs/6.2.327
[13] Higham, N.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra Appl. 103, 103–118 (1988) · Zbl 0649.65026 · doi:10.1016/0024-3795(88)90223-6
[14] Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, Berlin (1998) · Zbl 0941.91032
[15] Kilin, F.: Accelerating the calibration of stochastic volatility models. Technical Report, available at MPRA: http://mpra.ub.unimuenchen.de/2975 (2007)
[16] Lawrence, C.T., Tits, A.L.: A computationally efficient feasible sequential quadratic programming algorithm. SIAM J. Optim. 11(4), 1092–1118 (2000) · Zbl 1035.90105 · doi:10.1137/S1052623498344562
[17] Mayer, P., Kindermann, S., Albrecher, H., Engl, H.: Identification of the local speed function in a Levy model for option pricing. J. Integral Equ. Appl. 20(2), 161–200 (2008) · Zbl 1149.91034 · doi:10.1216/JIE-2008-20-2-161
[18] Mikhailov, S., Noegel, U.: Heston’s stochastic volatility model: implementation, calibration and some extensions. In: Wilmott Magazine, July 2003
[19] Robinson, S.M.: Stability theory for systems of inequalities, Part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976) · Zbl 0347.90050 · doi:10.1137/0713043
[20] Turinici, G.: Calibration of local volatility using the local and implied instantaneous variance. J. Comput. Finance 13(2) (2009) · Zbl 1181.91357
[21] Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006) · Zbl 1134.90542 · doi:10.1007/s10107-004-0559-y
[22] Weber, T.: Efficient calibration of Libor market models: alternative strategies and implementation issues. Presentation at the Frankfurt MathFinance Workshop, 14/15 April 2005
[23] Wright, S.J., Tenny, M.J.: A feasible trust-region sequential quadratic programming algorithm. SIAM J. Optim. 14(4), 1074–1105 (2004) · Zbl 1073.90047 · doi:10.1137/S1052623402413227
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.