×

Identification of the local speed function in a Lévy model for option pricing. (English) Zbl 1149.91034

This paper proposes a non-parametric stable calibration method based on Tikhonov regularization for the local speed function in a local Lévy model. The jump term in this model introduces an operator into the classical Black-Scholes equation such that the associated model calibration to observed option prices can be treated as a parameter identification problem for a partial integro-differential equation. This problem is ill-posed and thus requires regularization. The paper proves that nonlinear Tikhonov regularization is a stable and convergent method. Convergence rates are established and numerical illustrations given.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
65J15 Numerical solutions to equations with nonlinear operators
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
65R30 Numerical methods for ill-posed problems for integral equations
91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI

References:

[1] Y. Achdou and O. Pironneau, Computational methods for option pricing , SIAM, Philadelphia, PA, (2005). · Zbl 1078.91008 · doi:10.1137/1.9780898717495
[2] L. Andersen and J. Andreasen, Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing , Review of Derivatives Research, 4 , 231-262, (2000). · Zbl 1274.91398
[3] D. Belomestny and M. Reiss, Spectral calibration of exponential Lévy models: Implementation , SFB 649 Discussion Paper No. 35 , Berlin, (2006). · Zbl 1126.91022 · doi:10.1007/s00780-006-0021-5
[4] D. Belomstny and M. Reiss, Spectral calibration for exponential Lévy models , Finance and Stochastics, 10 , 449-474, (2006). · Zbl 1126.91022 · doi:10.1007/s00780-006-0021-5
[5] P. Carr, H. Geman, D. Madan, and M. Yor, Stochastic volatility for Lévy processes , Mathematical Finance, 13 , 345-382, (2003). · Zbl 1092.91022 · doi:10.1111/1467-9965.00020
[6] P. Carr, D. Madan, H. Geman, and M. Yor, From local volatility to local Lévy models , Quantitative Finance, 4 , 581-588, (2004). · doi:10.1080/14697680400000039
[7] R. Cont and P. Tankov, Financial Modelling with Jump Processes , Chapman and Hall, Boca Raton, FL, (2003). · Zbl 1052.91043
[8] R. Cont and P. Tankov, Nonparametric calibration of jump-diffusion option pricing models , Journal of Computational Finance, 7 , 1-49, (2004). · Zbl 1052.91043
[9] R. Cont and P. Tankov, Recovering exponential Lévy models from option prices: regularization of an ill-posed inverse problem , SIAM Journal on Control and Optimization, 43 , 1-25, (2006). · Zbl 1110.49033 · doi:10.1137/040616267
[10] R. Cont and E. Voltchkova, Integro-differential equations for option prices in exponential Lévy models , Finance and Stochastics, 9 , 299-325, (2005). · Zbl 1096.91023 · doi:10.1007/s00780-005-0153-z
[11] S. Crepey, Calibration of the local volatility in a generalized Black-Scholes model using Tikhonov regularization , SIAM Journal on Mathematical Analysis, 34 , 1183-1206, (2003). · Zbl 1126.35373 · doi:10.1137/S0036141001400202
[12] E. Derman and I. Kani, Riding on a smile , Risk, 7 , 32\ed39, (1994).
[13] B. Dupire, Pricing with a smile , Risk, 7 , 18\ed20, (1994).
[14] H. Egger and H. W. Engl, Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates , Inverse Problems, 21 (3), 1027\ed1045, (2005). · Zbl 1205.65194 · doi:10.1088/0266-5611/21/3/014
[15] H. W. Engl, Integralgleichungen , Springer Wien, (1997). · Zbl 0898.45001
[16] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems , Kluwer, Dordrecht, (1996). · Zbl 0859.65054
[17] H. W. Engl, K. Kunisch, and A. Neubauer, Convergence rates for Tikhonov regularization of nonlinear ill-posed problems , Inverse Problems, 5 , 523\ed540, (1989). · Zbl 0695.65037 · doi:10.1088/0266-5611/5/4/007
[18] L. C. Evans, Partial differential equations , Graduate Studies in Mathematics, Providence, RI: American Mathematical Society (AMS), 19 , (1998). · Zbl 0902.35002
[19] J.-P. Fouque, G. Papanicolaou, and K. R. Sircar, Derivatives in Financial Markets with Stochastic Volatility , Cambridge University Press, (2000). · Zbl 0954.91025
[20] C. Groetsch, The theory of Tikhonov regularization for Fredholm equations of the first kind , Pitman, Boston, (1984). · Zbl 0545.65034
[21] I. Gyöngy, Mimicking the one-dimensional marginal distributions of processes having an Ito differential , Probability Theory and Related Fields, 71 , 501\ed516, (1986). · Zbl 0579.60043 · doi:10.1007/BF00699039
[22] T. Hohage, Regularization of exponentially ill-posed problems , Numerical Functional Analysis and Optimization, 21 , 439\ed464, (2000). · Zbl 0969.65041 · doi:10.1080/01630560008816965
[23] S. G. Kou, A jump diffusion model for option pricing , Management Science, 48 , 1088\ed1101, (2002). · Zbl 1216.91039 · doi:10.1287/mnsc.48.8.1086.166
[24] S. G. Kou and H. Wang, First passage time for a jump diffusion process , Advances in Applied Probability, 35 , 504\ed531, (2003). · Zbl 1037.60073 · doi:10.1239/aap/1051201658
[25] C. Kravaris and J. H. Seinfeld, Identification of parameters in distributed parameter systems by regularization , SIAM Journal on Control and Optimization, 23 , 217\ed241, (1985). · Zbl 0563.93018 · doi:10.1137/0323017
[26] R. Kress, Linear integral equations , Springer New York, (1999). · Zbl 0920.45001
[27] O. Ladyzhenskaya, V. Solonnikov, and N. Ural’tseva, Linear and quasi-linear equations of parabolic type , Providence, RI: American Mathematical Society (AMS), (1968). · Zbl 0174.15403
[28] F. Liu and M. Z. Nashed, Tikhonov regularization of nonlinear ill-posed problems with closed operators in Hilbert scales , Journal of Inverse and Ill-Posed Problems, 5 (4), 363\ed376, (1997). · Zbl 0890.65056 · doi:10.1515/jiip.1997.5.4.363
[29] A.-M. Matache, T. von Petersdorff, and C. Schwab, Fast deterministic pricing of options on Lévy driven assets , Mathematical Modelling and Numerical Analysis, 38 , 37\ed71, (2004). · Zbl 1072.60052 · doi:10.1051/m2an:2004003
[30] M. Nashed, Approximate regularized solutions to improperly posed linear integral operator equations , In D. Colton, R.G. Gilbert, editor, Constructive and computational methods for differential and integral equations , Lecture Notes in Mathematics, Vol. 430 , pages 289-332. Springer, Berlin-Heidelberg-NewYork (1974). · Zbl 0298.47006 · doi:10.1007/BFb0066275
[31] A. Neubauer, Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales , Applicable analysis, 46 (1-2), 59\ed72, (1992). · Zbl 0788.47052 · doi:10.1080/00036819208840111
[32] P. Protter, Stochastic Integration and Differential Equations (2nd Edition) , Springer, (2004). · Zbl 1041.60005
[33] R. Ramlau, Morozov’s discrepancy principle for Tikhonov regularization of nonlinear operators , Numerical Functional Analysis and Optimization, 23 (1-2), 147\ed172, (2002). · Zbl 1002.65064 · doi:10.1081/NFA-120003676
[34] M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations , Springer, (1993). · Zbl 0917.35001
[35] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions , Cambridge University Press, (1999). · Zbl 0973.60001
[36] O. Scherzer, The use of Morozov’s discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems , Computing, 51 , 45\ed60, (1993). · Zbl 0801.65053 · doi:10.1007/BF02243828
[37] W. Schoutens, Lévy Processes in Finance: Pricing Financial Derivatives , Wiley, (2003).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.