×

Integer points on the curve \( Y^{2}=X^{3}\pm p^{k}X\). (English) Zbl 1093.11020

Let \(p\) be a prime number and \(k\) a positive integer. Let \(E_{p^k}\) and \(E_{-p^k}\) be the elliptic curves over \(\mathbb Q\) given by the Weierstrass equations \[ E_{p^k} : Y^2=X(X^2+p^k)\quad \text{and} \quad E_{-p^k} : Y^2=X(X^2-p^k). \] The author determines the sets \(E_{p^k}(\mathbb Z)\) and \(E_{-p^k}(\mathbb Z)\) of the integer points of \(E_{p^k}\) and \(E_{-p^k}\). For this aim, he is led to solve a finite number of quartic elliptic equations, using a reduction through an unramified map. Coombes and Grant have already used a similar reduction in order to compute the rational points on some families of curves of genus two. Let us mention the results obtained by the author concerning the set \(E_{-p^2}(\mathbb Z)\). Let us set \[ \begin{aligned} A&= \{ (-a^2,\pm ab) \mid (a,b)\in \mathbb Z^2 \;\text{with} \;a^4+b^2=p^2\},\\ B& =\{ (a^2,\pm ab) \mid(a,b)\in \mathbb Z^2 \;\text{with} \;b^2-a^4=-p^2\}.\end{aligned} \] If \(p\) is distinct from \(5\) and \(29\), we have \[ E_{-p^2}(\mathbb Z)=\{ (0,0), (\pm p, 0)\} \cup A\cup B. \] Suppose \(p=5\) or \(p=29\): the groups \(E_{-25}(\mathbb Q)\) and \(E_{-841}(\mathbb Q)\) are of rank one, and we have \[ \begin{aligned} E_{-25}(\mathbb Z)&= \{ (0,0),(-4,\pm 6), (\pm 5,0), (45,\pm 300)\},\\ E_{-841}(\mathbb Z)&= \{ (0,0),(\pm 29,0),(284229,\pm 151531380)\}.\end{aligned} \]

MSC:

11D25 Cubic and quartic Diophantine equations
11G05 Elliptic curves over global fields
Full Text: DOI

References:

[1] Michael A. Bennett, On the representation of unity by binary cubic forms, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1507 – 1534. · Zbl 0972.11014
[2] Jian Hua Chen and Paul Voutier, Complete solution of the Diophantine equation \?²+1=\?\?\(^{4}\) and a related family of quartic Thue equations, J. Number Theory 62 (1997), no. 1, 71 – 99. · Zbl 0869.11025 · doi:10.1006/jnth.1997.2018
[3] J. H. E. Cohn, The Diophantine equation \?²=\?\?\(^{4}\)+1. III, Math. Scand. 42 (1978), no. 2, 180 – 188. · Zbl 0395.10025 · doi:10.7146/math.scand.a-11746
[4] J. H. E. Cohn, The Diophantine equation \?\(^{4}\)+1=\?\?², Math. Comp. 66 (1997), no. 219, 1347 – 1351. · Zbl 0874.11031
[5] Kevin R. Coombes and David R. Grant, On heterogeneous spaces, J. London Math. Soc. (2) 40 (1989), no. 3, 385 – 397. · Zbl 0714.14021 · doi:10.1112/jlms/s2-40.3.385
[6] Sinnou David, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. France (N.S.) 62 (1995), iv+143 (French, with English and French summaries). · Zbl 0859.11048
[7] J. Gebel, A. Pethő, and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), no. 2, 171 – 192. · Zbl 0816.11019
[8] Genocchi, Sur l’impossibilite de quelques egalites doubles, C. R. Acad.Sci. Paris, 78 (1874), 423-436.
[9] Aleksander Grytczuk, Florian Luca, and Marek Wójtowicz, The negative Pell equation and Pythagorean triples, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 6, 91 – 94. · Zbl 0971.11013
[10] Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer-Verlag, Berlin-New York, 1978. · Zbl 0388.10001
[11] Wilhelm Ljunggren, Zur Theorie der Gleichung \?²+1=\?\?\(^{4}\), Avh. Norske Vid. Akad. Oslo. I. 1942 (1942), no. 5, 27 (German). · Zbl 0027.01103
[12] -, Einige Eigenschften der Einheiten reel Quadratischer und rein-bi-quadratischer Zahlkorper. Skr. Norske Vid. Akad. Oslo I, v.1936, no.12.
[13] F. Luca and P. G. Walsh, A generalization of a theorem of Cohn on the equation \?³-\?\?²=\pm 1, Rocky Mountain J. Math. 31 (2001), no. 2, 503 – 509. · Zbl 0989.11016 · doi:10.1216/rmjm/1020171571
[14] L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. · Zbl 0188.34503
[15] L. J. Mordell, The Diophantine equation \?²=\?\?\(^{4}\)+1, J. London Math. Soc. 39 (1964), 161 – 164. · Zbl 0129.02602 · doi:10.1112/jlms/s1-39.1.161
[16] Dimitrios Poulakis, A simple method for solving the Diophantine equation \?²=\?\(^{4}\)+\?\?³+\?\?²+\?\?+\?, Elem. Math. 54 (1999), no. 1, 32 – 36 (English, with German summary). · Zbl 0952.11005 · doi:10.1007/s000170050053
[17] D. Poulakis and P. G. Walsh, A note on the Diophantine equation \?²-\?\?\(^{4}\)=1 with prime discriminant, C. R. Math. Acad. Sci. Soc. R. Can. 27 (2005), no. 2, 54 – 57 (English, with English and French summaries). · Zbl 1154.11314
[18] H. E. Rose, A course in number theory, 2nd ed., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. · Zbl 0818.11001
[19] Pierre Samuel, Résultats élémentaires sur certaines équations diophantiennes, J. Théor. Nombres Bordeaux 14 (2002), no. 2, 629 – 646 (French, with English and French summaries). · Zbl 1067.11014
[20] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185 – 208; erratum 5 (1958), 259 (French). · Zbl 0082.25802
[21] W. Sierpiński, Elementary theory of numbers, 2nd ed., North-Holland Mathematical Library, vol. 31, North-Holland Publishing Co., Amsterdam; PWN — Polish Scientific Publishers, Warsaw, 1988. Edited and with a preface by Andrzej Schinzel. · Zbl 0638.10001
[22] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. · Zbl 0585.14026
[23] N. P. Smart, \?-integral points on elliptic curves, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 3, 391 – 399. · Zbl 0817.11031 · doi:10.1017/S0305004100072698
[24] R. J. Stroeker and N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), no. 2, 177 – 196. · Zbl 0805.11026
[25] Roel J. Stroeker and Nikos Tzanakis, On the elliptic logarithm method for elliptic Diophantine equations: reflections and an improvement, Experiment. Math. 8 (1999), no. 2, 135 – 149. · Zbl 0979.11060
[26] A. Togbe, P. M. Voutier, and P. G. Walsh, Solving a family of Thue equations with an application to the equation \?²-\?\?\(^{4}\)=1, Acta Arith. 120 (2005), no. 1, 39 – 58. · Zbl 1155.11318 · doi:10.4064/aa120-1-3
[27] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), no. 2, 99 – 132. · Zbl 0657.10014 · doi:10.1016/0022-314X(89)90014-0
[28] Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. · Zbl 0609.14011
[29] P. G. Walsh, Diophantine equations of the form \?\?\(^{4}\)-\?\?²=\pm 1, Algebraic number theory and Diophantine analysis (Graz, 1998) de Gruyter, Berlin, 2000, pp. 531 – 554. · Zbl 0989.11017
[30] Gary Walsh, A note on a theorem of Ljunggren and the Diophantine equations \?²-\?\?\?²+\?\(^{4}\)=1,4, Arch. Math. (Basel) 73 (1999), no. 2, 119 – 125. · Zbl 0941.11012 · doi:10.1007/s000130050376
[31] Don Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), no. 177, 425 – 436. · Zbl 0611.10008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.