×

Preconditioning a class of fourth order problems by operator splitting. (English) Zbl 1241.65031

The authors develop preconditioners for systems arising from finite element discretizations of paraboblic problems of fourth order in space domain. They consider boundary conditions leading to a splitting of the discretized fourth order operator into two discrete second order operators. This property is used in assembling the preconditioners.
The authors propose left and left-right preconditioners. They analyse the spectral properties of preconditioners. The results are presented on numerical experiments with the preconditioned conjugate gradients method and with the generalized minimal residual method.

MSC:

65F08 Preconditioners for iterative methods
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K46 Initial value problems for higher-order parabolic systems
65F10 Iterative numerical methods for linear systems

References:

[1] Aksoylu B., Holst M.: Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J. Numer. Anal. 44, 1005–1025 (2006) · Zbl 1153.65093 · doi:10.1137/S0036142902406119
[2] Bai F., Elliott C.M., Gardiner A., Spence A., Stuart A.M.: The viscous Cahn-Hilliard equation. Part I: computations. Nonlinearity 8, 131–160 (1995) · Zbl 0818.35045 · doi:10.1088/0951-7715/8/2/002
[3] Bänsch, E., Morin, P., Nochetto, R.H.: Finite element methods for surface diffusion. In: Colli, P., Verdi, C., Visintin, A. (eds.) Free Boundary Problems. International Series of Num. Math., vol. 147, pp. 53–63. Birkhäuser (2003) · Zbl 1039.65067
[4] Bänsch E., Morin P., Nochetto R.H.: Surface diffusion of graphs: variational formulation, error analysis, and simulation. SIAM J. Numer. Anal. 42, 773–799 (2004) · Zbl 1073.65098 · doi:10.1137/S0036142902419272
[5] Bänsch E., Morin P., Nochetto R.H.: Finite element methods for surface diffusion: the parametric case. J. Comput. Phys. 203, 321–343 (2005) · Zbl 1070.65093 · doi:10.1016/j.jcp.2004.08.022
[6] Barrett J., Garcke H., Nürnberg R.: A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222, 441–467 (2007) · Zbl 1112.65093 · doi:10.1016/j.jcp.2006.07.026
[7] Barrett J., Garcke H., Nürnberg R.: On the variational approximation of combined second and fourth order geometric evolution equations. SIAM J. Sci. Comput. 29, 1006–1041 (2007) · Zbl 1148.65074 · doi:10.1137/060653974
[8] Barrett J.W., Garcke H., Nürnberg R.: Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput. 31, 225–253 (2008) · Zbl 1186.65133 · doi:10.1137/070700231
[9] Barrett J.W., Nurnberg R., Styles V.: Finite element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal. 42, 738–772 (2004) · Zbl 1076.78012 · doi:10.1137/S0036142902413421
[10] Bartels S., Dolzmann G., Nochetto R.H.: A finite element scheme for the evolution of orientational order in fluid membranes. Model. Math. Anal. Numer. 44, 1–32 (2010) · Zbl 1423.76210 · doi:10.1051/m2an/2009040
[11] Bernoff A.J., Bertozzi A.L., Witelski T.P.: Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff. J. Stat. Phys. 93, 725–776 (1998) · Zbl 0951.74007 · doi:10.1023/B:JOSS.0000033251.81126.af
[12] Bertozzi A.L., Pugh M.G.: Long-wave instabilities and saturation in thin film equations. Commun. Pure Appl. Math. 51, 625–661 (1998) · Zbl 0916.35008 · doi:10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9
[13] Blowey J.F., Elliott C.M.: The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. Part II: numerical analysis. Eur. J. Appl. Math. 3, 147–179 (1992) · Zbl 0810.35158 · doi:10.1017/S0956792500000759
[14] Becker, J., Grün, G., Lenz, M., Rumpf, M.: Numerical methods for fourth order nonlinear degenerate diffusion problems. In: Mathematical Theory in Fluid Mechanics (Paseky, 2001). Appl. Math. vol. 47, no. 6, pp. 517–543 (2002) · Zbl 1090.35086
[15] Bjørstad P.: Fast numerical solution of the biharmonic Dirichlet problem on rectangles. SIAM J. Numer. Anal. 20, 59–71 (1983) · Zbl 0561.65077 · doi:10.1137/0720004
[16] Bjørstad P., Tjøstheim B.P.: Efficient algorithms for solving a fourth-order equation with the spectral-Galerkin method. SIAM J. Sci. Comput. 18, 621–632 (1997) · Zbl 0939.65129 · doi:10.1137/S1064827596298233
[17] Bonito A., Nochetto R.H., Pauletti M.S.: Parametric FEM for geometric biomembranes. J. Comput. Phys. 229, 3171–3188 (2010) · Zbl 1307.76049 · doi:10.1016/j.jcp.2009.12.036
[18] Bornemann F.: An adaptive multilevel approach to parabolic problems. Part III: 2D error estimation and multilevel preconditioning. IMPACT Comput. Sci. Eng. 4(1), 1–45 (1992) · Zbl 0745.65055 · doi:10.1016/0899-8248(92)90015-Z
[19] Braess D., Peisker P.: On the numerical solution of the biharmonic equation and the role of squaring matrices for preconditioning. IMA J. Numer. Anal. 6, 393–404 (1986) · Zbl 0616.65108 · doi:10.1093/imanum/6.4.393
[20] Bramble, J.H.: Multigrid methods. In: Pitman Research Notes in Mathematical Sciences, vol. 294. Longman Scientific &amp; Technical, Essex, England (1993)
[21] Bramble J.H., Pasciak J.E., Xu J.: Parallel multilevel preconditioners. Math. Comput. 55, 1–22 (1990) · Zbl 0703.65076 · doi:10.1090/S0025-5718-1990-1023042-6
[22] Bramble J., Pasciak J., Vassilevski P.S.: Computational scales of Sobolev norms with application to preconditioning. Math. Comput. 69, 463–480 (2000) · Zbl 0941.65052
[23] Bramble, J.H., Zhang, X.: The analysis of multigrid methods. In: Handbook of Numerical Analysis, vol. VII, pp. 173–415. North-Holland, Amsterdam (2000) · Zbl 0972.65103
[24] Cahn J.W., Elliott C.M., Novick-Cohen A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7, 287–301 (1996) · Zbl 0861.35039 · doi:10.1017/S0956792500002369
[25] Clarenz U., Diewald U., Dziuk G., Rumpf M., Rusu R.: A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Des. 21, 427–445 (2004) · Zbl 1069.65546 · doi:10.1016/j.cagd.2004.02.004
[26] Chen, L., Zhang, C.-S.: AFEM@matlab: a Matlab package of adaptive finite element methods. Technique report, Department of Mathematics, University of Maryland at College Park (2006)
[27] Deckelnick K., Dziuk G., Elliott C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005) · Zbl 1113.65097 · doi:10.1017/S0962492904000224
[28] Du Q.: A phase field formulation of the Willmore problem. Nonlinearity 18, 1249–1267 (2005) · Zbl 1125.35366 · doi:10.1088/0951-7715/18/3/016
[29] Du Q., Wang X.: Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56, 347–371 (2008) · Zbl 1143.92001
[30] Du Q., Li M., Liu C.: Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Disc. Cont. Dyn. Sys. B 8, 539–556 (2007) · Zbl 1172.74016 · doi:10.3934/dcdsb.2007.8.539
[31] Dziuk G.: An algorithm for evolutionary surfaces. Numer. Math. 58, 603–611 (1991) · Zbl 0714.65092 · doi:10.1007/BF01385643
[32] Dziuk G.: Computational parametric Willmore flow. Numer. Math. 111, 55–80 (2008) · Zbl 1158.65073 · doi:10.1007/s00211-008-0179-1
[33] Goldstein C.I., Manteuffel T.A., Parter S.V.: Preconditioning and boundary condtions without H 2 estimates: L 2 condition numbers and the distribution of the singular values. SIAM J. Numer. Anal. 30(2), 343–376 (1993) · Zbl 0773.65033 · doi:10.1137/0730017
[34] Golub G.H., van Loan Ch.: Matrix Computations, 2nd edn. Johns Hopkins University Press, Baltimore (1989) · Zbl 0733.65016
[35] Grün G.: On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions. Math. Comput. 72, 1251–1279 (2003) · Zbl 1084.65093 · doi:10.1090/S0025-5718-03-01492-3
[36] Grün G., Rumpf M.: Nonnegativity preserving convergent schemes for the thin film equation. Numer. Math. 87, 113–152 (2000) · Zbl 0988.76056 · doi:10.1007/s002110000197
[37] Hackbusch, W.: Multigrid methods and applications. In: Computational Mathematics, vol. 4. Springer-Verlag, Berlin (1985) · Zbl 0595.65106
[38] Hanisch, M.R.: Multigrid preconditioning for mixed finite element methods. PhD thesis, Cornell University (1991)
[39] Nachtigal N.L., Reddy S.C., Trefethen L.N.: How fast are nonsymmetric matrix iterations?. SIAM J. Matrix Anal. Appl. 13, 778–795 (1992) · Zbl 0754.65036 · doi:10.1137/0613049
[40] Oswald, P.: Multilevel Finite Element Approximation, Theory and Applications. Teubner Skripten zur Numerik. Teubner Verlag, Stuttgart (1994)
[41] Rusu R.E.: An algorithm for the elastic flow of surfaces. Interfaces Free Bound. 7, 229–239 (2005) · Zbl 1210.35149 · doi:10.4171/IFB/122
[42] Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM (2003) · Zbl 1031.65046
[43] Schmidt, A., Siebert, K.G.: Design of adaptive finite element software: the finite element toolbox ALBERTA. In: Springer LNCSE Series 42 (2005) · Zbl 1068.65138
[44] Silvester D., Mihajlović M.D.: A black-box multigrid preconditioner for the biharmonic equation. BIT 44, 151–163 (2004) · Zbl 1053.65092 · doi:10.1023/B:BITN.0000025094.68655.c7
[45] Silvester D., Mihajlović M.D.: Efficient parallel solvers for the biharmonic equation. Parallel Comput. 30, 35–55 (2004) · doi:10.1016/j.parco.2003.07.002
[46] Song Y.: A note on the variation of the spectrum of an arbitrary matrix. Linear Algebra Appl. 342, 41–46 (2002) · Zbl 0995.15014 · doi:10.1016/S0024-3795(01)00447-5
[47] Trefethen L.N., Embree M.: Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005) · Zbl 1085.15009
[48] Widlund, O.B.: Some Schwarz methods for symmetric and nonsymmetric elliptic problems. In: Keyes, D.E., Chan, T.F., Meurant, G.A., Scroggs, J.S., Voigt, R.G. (eds.) Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Philadelphia, pp. 19–36. SIAM (1992) · Zbl 0772.65025
[49] Wu H., Chen Z.: Uniform convergence of multigrid v-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China: Ser. A Math. 49, 1–28 (2006) · Zbl 1112.65104 · doi:10.1007/s11425-004-5234-5
[50] Xu J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992) · Zbl 0788.65037 · doi:10.1137/1034116
[51] Xu, J., Chen, L., Nochetto, R.H.: Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 599–659. Springer, Berlin (2009) · Zbl 1193.65209
[52] Xu J., Zikatanov L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15, 573–597 (2002) · Zbl 0999.47015 · doi:10.1090/S0894-0347-02-00398-3
[53] Yserentant H.: Old and new convergence proofs for multigrid methods. Acta Numer. 2, 285–326 (1993) · Zbl 0788.65108 · doi:10.1017/S0962492900002385
[54] Zhang X.: Multilevel Schwarz methods. Numer. Math. 63, 521–539 (1992) · Zbl 0796.65129 · doi:10.1007/BF01385873
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.