×

Numerical analysis for a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport. (English) Zbl 1527.92002

J. Numer. Math. 30, No. 4, 295-324 (2022); corrigendum ibid. 32, No. 2, 213-214 (2024).
Summary: A diffuse interface model for tumour growth in the presence of a nutrient consumed by the tumour is considered. The system of equations consists of a Cahn-Hilliard equation with source terms for the tumour cells and a reaction-diffusion equation for the nutrient. We introduce a fully-discrete finite element approximation of the model and prove stability bounds for the discrete scheme. Moreover, we show that discrete solutions exist and depend continuously on the initial and boundary data. We then pass to the limit in the discretization parameters and prove convergence to a global-in-time weak solution to the model. Under additional assumptions, this weak solution is unique. Finally, we present some numerical results including numerical error investigation in one spatial dimension and some long time simulations in two and three spatial dimensions.

MSC:

92-08 Computational methods for problems pertaining to biology
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
92C17 Cell movement (chemotaxis, etc.)
92C50 Medical applications (general)

Software:

FEniCS; SyFi; Chemotaxis

References:

[1] H. W. Alt, Linear Functional Analysis: An Application-Oriented Introduction, Springer, 2016. · Zbl 1358.46002
[2] D. Ambrosi and L. Preziosi, On the closure of mass balance models for tumor growth, Math. Models Methods Appl. Sci., 12 (2002), No. 05, 737-754. · Zbl 1016.92016
[3] G. Arumugam and J. Tyagi, Keller-Segel chemotaxis models: a review, Acta Appl. Math., 171 (2021), No. 1, 1-82. · Zbl 1464.35001
[4] J. W. Barrett and J. F. Blowey, Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility, Math. Comp., 68 (1999), No. 226, 487-517. · Zbl 1126.65321
[5] J. W. Barrett, J. F. Blowey, and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Num. Anal., 37 (1999), No. 1, 286-318. · Zbl 0947.65109
[6] J. W. Barrett and S. Boyaval, Finite element approximation of the FENE-P model, IMA J. Numer. Anal., 38 (2018), No. 4, 1599-1660. · Zbl 1459.65179
[7] J. W. Barrett, S. Langdon, and R. Nürnberg, Finite element approximation of a sixth order nonlinear degenerate parabolic equation, Numer. Math., 96 (2004), No. 3, 401-434. · Zbl 1041.65076
[8] J. W. Barrett, R. Nürnberg, and V. Styles, Finite element approximation of a phase field model for void electromigration, SIAM J. Num. Anal., 42 (2004), No. 2, 738-772. · Zbl 1076.78012
[9] S. Bartels, Numerical Approximation of Partial Differential Equations, Texts in Applied Mathematics, Vol. 64, Springer, Cham, 2016. · Zbl 1353.65089
[10] N. Bellomo, N. K. Li, and P. K. Maini, On the foundations of cancer modelling: selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci., 18 (2008), No. 04, 593-646. · Zbl 1151.92014
[11] J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis, European J. Appl. Math., 3 (1992), No. 2, 147-179. · Zbl 0810.35158
[12] H. M. Byrne and M. A. J. Chaplain, Free boundary value problems associated with the growth and development of multicellular spheroids, European J. Appl. Math., 8 (1997), No. 6, 639-658. · Zbl 0906.92016
[13] A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., 111 (2008), No. 2, 169-205. · Zbl 1307.92045
[14] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, 2002.
[15] P. Clément, Approximation by finite element functions using local regularization, ESAIM: Math. Model. Numer. Anal., 9 (1975), No. R2, 77-84. · Zbl 0368.65008
[16] P. Colli, G. Gilardi, E. Rocca, and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30 (2017), No. 6, 2518-2546. · Zbl 1378.35175
[17] V. Cristini, X. Li, J. S. Lowengrub, and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching, J. Math. Biol., 58 (2009), No. 4, 723-763. · Zbl 1311.92039
[18] V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, 2010.
[19] W. Dahmen and A. Reusken, Numerik für Ingenieure und Naturwissenschaftler, 2nd ed, Springer eBook Collection, Berlin-Heidelberg, 2008. · Zbl 1153.65002
[20] M. Dai, E. Feireisl, E. Rocca, G. Schimperna, and M. Schonbek, Analysis of a diffuse interface model of multispecies tumor growth, Nonlinearity, 30 (2017), No. 4, 1639-1658. · Zbl 1367.35185
[21] Q. Du and X. Feng, Chapter 5: The phase field method for geometric moving interfaces and their numerical approximations, In: Geometric Partial Differential Equations, Part I (Eds. A. Bonito and R. H. Nochetto), Handbook of Numerical Analysis, Vol. 21, Elsevier, 2020, pp. 425-508. · Zbl 1455.35276
[22] M. Ebenbeck, H. Garcke, and R. Nürnberg, Cahn-Hilliard-Brinkman systems for tumour growth, Discrete Contin. Dyn. Syst. Ser. S14 (2021), No. 11, 3989-4033. · Zbl 1480.35411
[23] C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, In: Mathematical Models for Phase Change Problems, Birkhäuser Basel, Basel, 1989, pp. 35-73. · Zbl 0692.73003
[24] C. M. Elliott, D. A. French, and F. A. Milner, A second order splitting method for the Cahn-Hilliard equation, Numer. Math., 54 (1989), No. 2, 575-590. · Zbl 0668.65097
[25] Y. Epshteyn and A. Izmirlioglu, Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model, J. Sci. Comput., 40 (2009), No. 1, 211-256. · Zbl 1203.65180
[26] L. C. Evans, Partial Differential Equations, 2nd ed., American Mathematical Society, Providence, R.I., 2010. · Zbl 1194.35001
[27] J. Eyles, J. R. King, and V. Styles, A tractable mathematical model for tissue growth, Interfaces and Free Boundaries, 21 (2019), No. 4, 463-493. · Zbl 1442.35557
[28] F. Filbet, A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numer. Math., 104 (2006), 457-488. · Zbl 1098.92006
[29] H. B. Frieboes, J. S. Lowengrub, S. Wise, X. Zheng, P. Macklin, E. L. Bearer, and V. Cristini, Computer simulation of glioma growth and morphology, NeuroImage, 37 (2007), S59-S70.
[30] A. Friedman, Mathematical analysis and challenges arising from models of tumor growth, Math. Models Methods Appl. Sci., 17 (2007), 1751-1772. · Zbl 1135.92013
[31] S. Frigeri, K. F. Lam, and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, In: Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, Springer, 2017, pp. 217-254. · Zbl 1382.35311
[32] H. Garcke and K. F. Lam, Analysis of a Cahn-Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), No. 8, 4277-4308. · Zbl 1360.35042
[33] H. Garcke and K. F. Lam, Well-posedness of a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport, European J. Appl. Math., 28 (2017), No. 2, 284-316. · Zbl 1375.92011
[34] H. Garcke, K. F. Lam, R. Nürnberg, and E. Sitka, A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), No. 03, 525-577. · Zbl 1380.92029
[35] H. Garcke, K. F. Lam, and E. Rocca, Optimal control of treatment time in a diffuse interface model of tumor growth, Appl. Math. Optim., 78 (2018), No. 3, 495-544. · Zbl 1403.35139
[36] H. Garcke, K. F. Lam, and A. Signori, On a phase field model of Cahn-Hilliard type for tumour growth with mechanical effects, Nonlin. Anal. Real World Appl., 57 (2021), 103192. · Zbl 1456.35091
[37] H. Garcke, K. F. Lam, E. Sitka, and V. Styles, A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), No. 06, 1095-1148. · Zbl 1336.92038
[38] H. P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theoret. Biol., 56 (1976), No. 1, 229-242.
[39] G. Grün, On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions, Math. Comp., 72 (2003), 1251-1279. · Zbl 1084.65093
[40] G. Grün, On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities, SIAM J. Num. Anal., 51 (2013), No. 6, 3036-3061. · Zbl 1331.35277
[41] A. Gurusamy and K. Balachandran, Finite element method for solving Keller-Segel chemotaxis system with cross-diffusion, Int. J. Dyn. Control, 6 (2018), No. 2, 539-549.
[42] A. Hawkins-Daarud, K. G. van der Zee, and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Methods Biomed. Engrg., 28 (2012), No. 1, 3-24. · Zbl 1242.92030
[43] T. Hillen and K. J. Painter, A user’s guide to {PDE} models for chemotaxis, J. Math. Biol., 58 (2009), No. 1-2, 183-217. · Zbl 1161.92003
[44] P. Krejčí, E. Rocca, and J. Sprekels, Analysis of a tumor model as a multicomponent deformable porous medium, Interfaces Free Bound., 24 (2022), No. 2, 235-262. · Zbl 1490.76207
[45] A. Logg, K. A. Mardal, G. N. Wells (Eds.), Automated Solution of Differential Equations by the Finite Element Method, The FEniCS book, Vol. 84. Springer Science & Business Media, 2012. · Zbl 1247.65105
[46] A. Marrocco, Numerical simulation of chemotactic bacteria aggregation via mixed finite elements, M2AN Math. Model. Numer. Anal., 37 (2003), No. 4, 617-630. · Zbl 1065.92006
[47] J. T. Oden, A. Hawkins, and S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20 (2010), No. 03, 477-517. · Zbl 1186.92024
[48] T. Roose, S. J. Chapman, and P. K. Maini, Mathematical models of avascular tumor growth, SIAM Review, 49 (2007), No. 2, 179-208. · Zbl 1117.93011
[49] E. Roussos, J. Condeelis, and A. Patsialou, Chemotaxis in cancer, Nat. Rev. Cancer, 11 (2011), 573-587.
[50] N. Saito, Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis, IMA J. Numer. Anal., 27 (2007), No. 2, 332-365. · Zbl 1119.65094
[51] N. Saito, Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis, Commun. Pure Appl. Anal., 11 (2012), No. 1, 339-364. · Zbl 1264.65148
[52] J. Simon, Compact sets in the space L^p(0, T; B), Annali di Matematica Pura ed Applicata, 146 (1986), 65-96. · Zbl 0629.46031
[53] R. Strehl, A. Sokolov, D. Kuzmin, D. Horstmann, and S. Turek, A positivity-preserving finite element method for chemotaxis problems in 3D, J. Comput. Appl. Math., 239 (2013), 290-303. · Zbl 1316.92015
[54] D. Trautwein, A Finite Element Method for a Cahn-Hilliard System Modelling Tumour Growth, Master’s thesis, University of Regensburg, 2020.
[55] S. M. Wise, J. S. Lowengrub, H. B. Frieboes, and V. Cristini, Three-dimensional multispecies nonlinear tumor growth, I: Model and numerical method, J. Theor. Biol., 253 (2008), No. 3, 524-543. · Zbl 1398.92135
[56] J. Wloka, Partial Differential Equations, Cambridge University Press, 1987. · Zbl 0623.35006
[57] J. Zhang, J. Zhu, and R. Zhang, Characteristic splitting mixed finite element analysis of Keller-Segel chemotaxis models, Appl. Math. Comput., 278 (2016), 33-44. · Zbl 1410.65385
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.