×

Topological analysis of the complex SSH model using the quantum geometric tensor. (English) Zbl 07885513

Summary: This paper presents two methods for topological analysis of the complex Hermitian Su-Schrieffer-Heeger (SSH) model using the quantum geometric tensor: Berry phase and topological data analysis. We demonstrate how both methods can effectively generate topological phase diagrams for the model, revealing two distinct regions based on the relative magnitudes of the parameters \(|v|\) and \(|w|\). Specifically, when \(|v| > |w|\), the system is found to be topologically trivial, whereas for \(|v| < |w|\), it exhibits topologically non-trivial behavior. Our results contribute to building the groundwork for topological analysis of more complicated SSH-type models.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

Software:

Scikit; Flux; TopDeg

References:

[1] Su, W.; Schrieffer, J.; Heeger, A. J., Solitons in polyacetylene, Phys. Rev. Lett., 42, 1698, 1979 · doi:10.1103/PhysRevLett.42.1698
[2] Sirker, J.; Maiti, M.; Konstantinidis, N.; Sedlmayr, N., Boundary fidelity and entanglement in the symmetry protected topological phase of the SSH model, J. Stat. Mech., 2014, 2014 · Zbl 1456.82600 · doi:10.1088/1742-5468/2014/10/P10032
[3] Li, G-Q; Wang, B-H; Tang, J-Y; Peng, P.; Dong, L-W, Topological properties of tetratomic su-schrieffer-heeger chains with hierarchical long-range hopping, Chin. Phys. B, 32, 2023 · doi:10.1088/1674-1056/aca7ef
[4] Kitaev, A. Y., Fault-tolerant quantum computation by anyons, Ann. Phys., NY, 303, 2, 2003 · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[5] Plugge, S.; Rasmussen, A.; Egger, R.; Flensberg, K., Majorana box qubits, New J. Phys., 19, 2017 · Zbl 1512.81020 · doi:10.1088/1367-2630/aa54e1
[6] Li, L.; Yang, C.; Chen, S., Winding numbers of phase transition points for one-dimensional topological systems, Europhys. Lett., 112, 2015 · doi:10.1209/0295-5075/112/10004
[7] Li, C.; Miroshnichenko, A. E., ExtendedSSH model:Non-local couplings and non-monotonous edge states, Physics, 1, 2, 2018 · doi:10.3390/physics1010002
[8] Li, L.; Xu, Z.; Chen, S., Topological phases of generalized Su-Schrieffer-Heeger models, Phys. Rev. B, 89, 2014 · doi:10.1103/PhysRevB.89.085111
[9] Rufo, S.; Lopes, N.; Continentino, M. A.; Griffith, M., Multicritical behavior in topological phase transitions, Phys. Rev. B, 100, 2019 · doi:10.1103/PhysRevB.100.195432
[10] Anastasiadis, A.; Styliaris, G.; Chaunsali, R.; Theocharis, G.; Diakonos, F. K., Bulk-edge correspondence in the trimerSu-Schrieffer-Heeger model, Phys. Rev. B, 106, 2022 · doi:10.1103/PhysRevB.106.085109
[11] Alvarez, V. M.; Coutinho-Filho, M., Edge states in trimer lattices, Phys. Rev. A, 99, 2019 · doi:10.1103/PhysRevA.99.013833
[12] Otaki, Y.; Fukui, T., Higher-order topological insulators in a magnetic field, Phys. Rev. B, 100, 2019 · doi:10.1103/PhysRevB.100.245108
[13] Obana, D.; Liu, F.; Wakabayashi, K., Topological edge states in the su-schrieffer-heeger model, Phys. Rev. B, 100, 2019 · doi:10.1103/PhysRevB.100.075437
[14] Liu, Q.; Wang, K.; Dai, J-X; Zhao, Y., Takagi topological insulator on the honeycomb lattice, Front. Phys., 10, 2022 · doi:10.3389/fphy.2022.915764
[15] Berry, M. V., Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. A, 392, 45-7, 1984 · Zbl 1113.81306 · doi:10.1098/rspa.1984.0023
[16] Böhm, A.; Mostafazadeh, A.; Koizumi, H.; Niu, Q.; Zwanziger, J., The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts and Applications in Molecular and Condensed Matter Physics, 2003, Springer · Zbl 1039.81003
[17] Yao, S.; Wang, Z., Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett., 121, 2018 · doi:10.1103/PhysRevLett.121.086803
[18] Kawabata, K.; Shiozaki, K.; Ueda, M.; Sato, M., Symmetry and topology in non-Hermitian physics, Phys. Rev. X, 9, 2019 · doi:10.1103/PhysRevX.9.041015
[19] Tsubota, S.; Yang, H.; Akagi, Y.; Katsura, H., Symmetry-protected quantization of complexBerry phases in non-Hermitian many-body systems, Phys. Rev. B, 105, 2022 · doi:10.1103/PhysRevB.105.L201113
[20] Park, S.; Hwang, Y.; Yang, B-J, Unsupervised learning of topological phase diagram using topological data analysis, Phys. Rev. B, 105, 2022 · doi:10.1103/PhysRevB.105.195115
[21] Gong, Z.; Ashida, Y.; Kawabata, K.; Takasan, K.; Higashikawa, S.; Ueda, M., Topological phases of non-Hermitian systems, Phys. Rev. X, 8, 2018 · doi:10.1103/PhysRevX.8.031079
[22] Yu, L-W; Deng, D-L, Unsupervised learning of non-hermitian topological phases, Phys. Rev. Lett., 126, 2021 · doi:10.1103/PhysRevLett.126.240402
[23] Zhou, H.; Lee, J. Y., Periodic table for topological bands with non-Hermitian symmetries, Phys. Rev. B, 99, 2019 · doi:10.1103/PhysRevB.99.235112
[24] Cheng, Z.; Yu, Z., Supervised machine learning topological states of one-dimensional non-Hermitian systems, Chin. Phys. Lett., 38, 2021 · doi:10.1088/0256-307X/38/7/070302
[25] Ryu, J-W; Lee, S-Y; Kim, S. W., Analysis of multiple exceptional points related to three interacting eigenmodes in a non-Hermitian Hamiltonian, Phys. Rev. A, 85, 2012 · doi:10.1103/PhysRevA.85.042101
[26] Xu, X-W; Zhao, Y-J; Wang, H.; Chen, A-X; Liu, Y-X, Generalized Su-schrieffer-heeger model in one dimensional optomechanical arrays, Front. Phys., 9, 2022 · doi:10.3389/fphy.2021.813801
[27] Oztas, Z.; Candemir, N., Su-schrieffer-heeger model with imaginary gauge field, Phys. Lett. A, 383, 1821, 2019 · Zbl 1479.82072 · doi:10.1016/j.physleta.2019.02.037
[28] Liu, Y.; Han, Y.; Liu, C., Topological phases of non-hermitian ssh model with spin-orbit coupling, Optik, 255, 2022 · doi:10.1016/j.ijleo.2022.168727
[29] Nunnenkamp, A.; Koch, J.; Girvin, S., Synthetic gauge fields and homodyne transmission in jaynes-cummings lattices, New J. Phys., 13, 2011 · doi:10.1088/1367-2630/13/9/095008
[30] Koch, J.; Houck, A. A.; Hur, K. L.; Girvin, S., Time-reversal-symmetry breaking in circuit-qed-based photon lattices, Phys. Rev. A, 82, 2010 · doi:10.1103/PhysRevA.82.043811
[31] Du, L.; Wu, J-H; Artoni, M.; La Rocca, G., Phase-dependent topological interface state and spatial adiabatic passage in a generalized Su-schrieffer-heeger model, Phys. Rev. A, 100, 2019 · doi:10.1103/PhysRevA.100.012112
[32] Wu, J.; Wang, Z.; Biao, Y.; Fei, F.; Zhang, S.; Yin, Z.; Hu, Y.; Song, Z.; Wu, T.; Song, F., Non-abelian gauge fields in circuit systems, Nat. Electron., 5, 635, 2022 · doi:10.1038/s41928-022-00833-8
[33] Asbóth, J. K.; Oroszlány, L.; Pályi, A., Lecture Notes Physics, vol 919, p 166, 2016, Springer · Zbl 1331.82002 · doi:10.1007/978-3-319-25607-8
[34] Sedlmayr, N.; Jaeger, P.; Maiti, M.; Sirker, J., Bulk-boundary correspondence for dynamical phase transitions in one-dimensional topological insulators and superconductors, Phys. Rev. B, 97, 2018 · doi:10.1103/PhysRevB.97.064304
[35] Koch, R.; Budich, J. C., Bulk-boundary correspondence in non-Hermitian systems: stability analysis for generalized boundary conditions, Eur. Phys. J. D, 74, 1, 2020 · doi:10.1140/epjd/e2020-100641-y
[36] Prodan, E.; Schulz-Baldes, H., Bulk and Boundary Invariants for Complex Topological Insulators: Fromk-Theory to Physics, 2016, Springer · Zbl 1342.82002
[37] Yokomizo, K.; Murakami, S., Non-Bloch band theory of non-Hermitian systems, Phys. Rev. Lett., 123, 2019 · doi:10.1103/PhysRevLett.123.066404
[38] Xiong, Y., Why does bulk boundary correspondence fail in some non-Hermitian topological models, J. Phys. Commun., 2, 2018 · doi:10.1088/2399-6528/aab64a
[39] Carollo, A.; Valenti, D.; Spagnolo, B., Geometry of quantum phase transitions, Phys. Rep., 838, 1, 2020 · Zbl 1442.81031 · doi:10.1016/j.physrep.2019.11.002
[40] Gu, S-J, Fidelity approach to quantum phase transitions, Int. J. Mod. Phys. B, 24, 4371, 2010 · Zbl 1213.82031 · doi:10.1142/S0217979210056335
[41] Chern, S-S, On the curvatura integra in a Riemannian manifold, Ann. Math., 46, 674, 1945 · Zbl 0060.38104 · doi:10.2307/1969203
[42] Ye, C CVleeshouwers, WHeatley, SGritsev, VSmith, C M2023Quantum geometry of non-hermitian topological systemsPhysical Review Research · doi:10.1103/PhysRevResearch.6.023202
[43] Simon, B., Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett., 51, 2167, 1983 · doi:10.1103/PhysRevLett.51.2167
[44] Dey, T. K.; Wang, Y., Computational Topology for Data Analysis, 2022, Cambridge University Press · Zbl 1498.57001
[45] Von Luxburg, U., A tutorial on spectral clustering, Stat. Comput., 17, 395, 2007 · doi:10.1007/s11222-007-9033-z
[46] Pedregosa, F., Scikit-learn: machine learning in python, J. Mach. Learn. Res., 12, 2825, 2011 · Zbl 1280.68189
[47] Brouwer, L. E J., Über abbildung von mannigfaltigkeiten, Math. Ann., 71, 97, 1911 · JFM 42.0417.01
[48] Franek, P.; Ratschan, S., Effective topological degree computation based on interval arithmetic, Math. Comput., 84, 1265, 2015 · Zbl 1318.55002 · doi:10.1090/S0025-5718-2014-02877-9
[49] Innes, M., Flux: elegant machine learning with julia, J. Open Source Softw., 3, 602, 2018 · doi:10.21105/joss.00602
[50] Čufar, M., Ripserer.jl: flexible and efficient persistent homology computation in julia, J. Open Source Softw., 5, 2614, 2020 · doi:10.21105/joss.02614
[51] Shin, B. C., A formula for eigenpairs of certain symmetric tridiagonal matrices, Bull. Aust. Math. Soc., 55, 249, 1997 · Zbl 0881.15009 · doi:10.1017/S0004972700033918
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.