×

A scaled boundary finite element based node-to-node scheme for 2D frictional contact problems. (English) Zbl 1440.74241

Summary: This paper proposes a new node-to-node (NTN) scheme for modeling two-dimensional contact problems within a scaled boundary finite element method (SBFEM) framework. The analysis is formulated and solved directly as a mathematical programming problem known as a mixed complementarity problem (MCP). Polygon elements with arbitrary number of edges and nodes are constructed in the SBFEM modeling. Only the edges of these polygon elements are discretized thereby accommodating highly non-uniform discretization. Non-matching meshes are easily converted into matching meshes by appropriate node insertions, thereby allowing the use of the advantageous node-to-node contact scheme. Contact constraints of non-penetration and friction are described directly in a complementarity format that enables, for instance, the satisfaction of non-penetration without having to resort to user-specified control parameters. Numerical examples using 1st and 2nd order scaled boundary elements are presented to highlight the quality of the elements used through satisfaction of various patch tests, and the accuracy and robustness of the overall approach.

MSC:

74M10 Friction in solid mechanics
74M15 Contact in solid mechanics
74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs

Software:

FEAPpv; GAMS; PATH Solver
Full Text: DOI

References:

[1] Jardine, R. J.; Fourie, A. B.; Potts, D. M.; Burland, J. B., Studies of the influence of non-linear stress – strain characteristics in soil – structure interaction, Geotechnique, 36, 3, 377-396 (1986)
[2] Sheng, D.; Eigenbrod, K. D.; Wriggers, P., Finite element analysis of pile installation using large-slip frictional contact, Comput. Geotech., 32, 1, 17-26 (2005)
[3] Steif, P. S., Crack extension under compressive loading, Eng. Fract. Mech., 20, 3, 463-473 (1984)
[4] Hertz, H., On the contact of elastic solids, J. Reine Angew. Math., 92, 110, 156-171 (1881) · JFM 14.0807.01
[5] N. Kikuchi, Penalty/finite element approximations of a class of unilateral contact problems, in: Penalty Method and Finite Element Method, ASME, New York.; N. Kikuchi, Penalty/finite element approximations of a class of unilateral contact problems, in: Penalty Method and Finite Element Method, ASME, New York. · Zbl 0506.73105
[6] Baillet, L.; Sassi, T., Finite element method with Lagrange multipliers for contact problems with friction, C. R. Mathemat., 334, 10, 917-922 (2002) · Zbl 1073.74047
[7] Zavarise, G.; De Lorenzis, L., The node-to-segment algorithm for 2D frictionless contact: Classical formulation and special cases, Comput. Methods Appl. Mech. Engrg., 198, 41, 3428-3451 (2009) · Zbl 1230.74237
[8] Zavarise, G.; Wriggers, P., A segment-to-segment contact strategy, Math. Comput. Modelling, 28, 4, 497-515 (1998) · Zbl 1002.74564
[9] Fischer, K. A.; Wriggers, P., Frictionless 2D contact formulations for finite deformations based on the mortar method, Comput. Mech., 36, 3, 226-244 (2005) · Zbl 1102.74033
[10] Jin, S.; Sohn, D.; Lim, J. H.; Im, S., A node-to-node scheme with the aid of variable-node elements for elasto-plastic contact analysis, Internat. J. Numer. Methods Engrg., 102, 12, 1761-1783 (2015) · Zbl 1352.74207
[11] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM (1988) · Zbl 0685.73002
[12] Wriggers, P., Computational Contact Mechanics (2006), Springer · Zbl 1104.74002
[13] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method for Solid and Structural Mechanics (2005), Butterworth-Heinemann · Zbl 1084.74001
[14] Simo, J. C.; Wriggers, P.; Taylor, R. L., A perturbed Lagrangian formulation for the finite element solution of contact problems, Comput. Methods Appl. Mech. Engrg., 50, 2, 163-180 (1985) · Zbl 0552.73097
[15] Laursen, T. A., Formulation and treatment of frictional contact problems using finite elements (1992), Stanford University: Stanford University California, (Ph.D thesis)
[16] Belytschko, T.; Liu, W. K.; Moran, B.; Elkhodary, K., Nonlinear Finite Elements for Continua and Structures (2013), John Wiley & Sons · Zbl 1279.74002
[17] Wriggers, P.; Simo, J., A note on tangent stiffness for fully nonlinear contact problems, Int. J. Numer. Methods Biomed. Eng., 1, 5, 199-203 (1985) · Zbl 0582.73110
[18] Simo, J. C.; Laursen, T., An augmented Lagrangian treatment of contact problems involving friction, Comput. Struct., 42, 1, 97-116 (1992) · Zbl 0755.73085
[19] Arrow, K.; Hurwicz, L., Gradient methods for constrained maxima, Oper. Res., 5, 2, 258-265 (1957) · Zbl 1414.90361
[20] Maier, G.; Andreuzzi, F.; Giannessi, F.; Jurina, L.; Taddei, F., Unilateral contact, elastoplasticity and complementarity with reference to offshore pipeline design, Comput. Methods Appl. Mech. Engrg., 17/18, 2, 469-495 (1979) · Zbl 0398.73055
[21] Klarbring, A., A mathematical programming approach to the three-dimensional contact problems with friction, Comput. Methods Appl. Mech. Engrg., 58, 2, 175-200 (1986) · Zbl 0595.73125
[22] Kwak, B. M., Complementarity problem formulation of three-dimensional contact, J. Appl. Mech., 58, 1, 134-140 (1991) · Zbl 0756.73086
[23] Tin-Loi, F.; Xia, S. H., Nonholonomic elastoplastic analysis involving unilateral frictionless contact as a mixed complementarity problem, Comput. Methods Appl. Mech. Engrg., 190, 35-36, 4551-4568 (2001) · Zbl 1059.74063
[24] Tin-Loi, F.; Xia, S. H., An iterative complementarity approach for elastoplastic analysis involving frictional contact, Int. J. Mech. Sci., 45, 2, 196-216 (2003) · Zbl 1032.74686
[25] Francavilla, A.; Zienkiewicz, O. C., A note on numerical computation of elastic contact problems, Internat. J. Numer. Methods Engrg., 9, 4, 913-924 (1975)
[26] Hughes, T. J.R.; Taylor, R. L.; Kanoknukulchai, W., A finite element method for large displacement contact and impact problems, (Bathe, K. J., Formulations and Computational Algorithms in FE Analysis (1977), MIT Press: MIT Press Boston), 468-495
[27] Zavarise, G.; De Lorenzis, L., A modified node-to-segment algorithm passing the contact patch test, Internat. J. Numer. Methods Engrg., 79, 4, 379 (2009) · Zbl 1171.74455
[28] Laursen, T. A., Computational Contact and Impact Mechanics: Fundamentals of Modelling Interfacial Phenomena in Nonlinear Finite Element Analysis (2002), Springer · Zbl 0996.74003
[29] Papadopoulos, P.; Taylor, R. L., A mixed formulation for the finite element solution of contact problems, Comput. Methods Appl. Mech. Engrg., 94, 3, 373-389 (1992) · Zbl 0743.73029
[30] Zavarise, G.; Wriggers, P.; Schrefler, B. A., On augmented Lagrangian algorithms for thermomechanical contact problems with friction, Internat. J. Numer. Methods Engrg., 38, 17, 2929-2949 (1995) · Zbl 0845.73066
[31] Puso, M. A.; Laursen, T. A., A mortar segment-to-segment contact method for large deformation solid mechanics, Comput. Methods Appl. Mech. Engrg., 193, 6, 601-629 (2004) · Zbl 1060.74636
[32] Belgacem, F. B.; Hild, P.; Laborde, P., The mortar finite element method for contact problems, Math. Comput. Modelling, 28, 4-8, 263-271 (1998) · Zbl 1098.74682
[33] Laursen, T. A.; Puso, M. A.; Sanders, J., Mortar contact formulations for deformable – deformable contact: Past contributions and new extensions for enriched and embedded interface formulations, Comput. Methods Appl. Mech. Engrg., 205, 1, 3-15 (2012) · Zbl 1239.74070
[34] Yastrebov, V. A., Numerical Methods in Contact Mechanics (2013), John Wiley & Sons · Zbl 1268.74003
[35] Xu, D., A new node-to-node approach to contact/impact problems for two dimensional elastic solids subject to finite deformation, ((2008), University of Illinois at Urbana-Champaign: University of Illinois at Urbana-Champaign Illinois), (Ph.D thesis)
[36] Bitencourt, L. A.; Manzoli, O. L.; Prazeres, P. G.; Rodrigues, E. A.; Bittencourt, T. N., A coupling technique for non-matching finite element meshes, Comput. Methods Appl. Mech. Engrg., 290, 15 June, 19-44 (2015) · Zbl 1425.65148
[37] Kim, J. H.; Lim, J. H.; Lee, J. H.; Im, S., A new computational approach to contact mechanics using variable-node finite elements, Internat. J. Numer. Methods Engrg., 73, 13, 1966-1988 (2008) · Zbl 1195.74180
[38] Lim, J. H.; Im, S.; Cho, Y.-S., Variable-node elements for non-matching meshes by means of MLS (moving least-square) scheme, Internat. J. Numer. Methods Engrg., 72, 7, 835-857 (2007) · Zbl 1194.74430
[39] Jin, S.; Sohn, D.; Im, S., Node-to-node scheme for three-dimensional contact mechanics using polyhedral type variable-node elements, Comput. Methods Appl. Mech. Engrg., 304, 1 June, 217-242 (2016) · Zbl 1425.74342
[40] Wriggers, P.; Rust, W.; Reddy, B., A virtual element method for contact, Comput. Mech., 58, 6, 1039-1050 (2016) · Zbl 1398.74420
[41] Ooi, E. T.; Song, C.; Tin-Loi, F., A scaled boundary polygon formulation for elasto-plastic analyses, Comput. Methods Appl. Mech. Engrg., 268, 1 January, 905-937 (2014) · Zbl 1295.74102
[42] Ooi, E. T.; Song, C.; Tin-Loi, F.; Yang, Z., Polygon scaled boundary finite elements for crack propagation modelling, Internat. J. Numer. Methods Engrg., 91, 3, 319-342 (2012) · Zbl 1246.74062
[43] Dirkse, S. P.; Ferris, M. C., The PATH solver: A nonmonotone stabilization scheme for mixed complementarity problems, Optim. Methods Softw., 5, 2, 123-156 (1995)
[44] Brooke, A.; Kendrick, D.; Meeraus, A.; Raman, R., GAMS: A User’s Guide (1998), GAMS Development Corporation: GAMS Development Corporation Washington DC 20007
[45] Ooi, E. T.; Man, H.; Natarajan, S.; Song, C.; Tin-Loi, F., A quadtree-based scaled boundary finite element method for crack propagation modelling, (Smith, S. T., Proceedings, 23rd Australasian Conference on the Mechanics of Structures and Materials (2014), Southern Cross University), 813-818
[46] Deeks, A. J.; Wolf, J. P., A virtual work derivation of the scaled boundary finite-element method for elastostatics, Comput. Mech., 28, 6, 489-504 (2002) · Zbl 1076.74552
[47] Konyukhov, A.; Schweizerhof, K., On the solvability of closest point projection procedures in contact analysis: Analysis and solution strategy for surfaces of arbitrary geometry, Comput. Methods Appl. Mech. Engrg., 197, 33, 3045-3056 (2008) · Zbl 1194.74223
[48] Yang, B.; Laursen, T. A.; Meng, X., Two dimensional mortar contact methods for large deformation frictional sliding, Internat. J. Numer. Methods Engrg., 62, 9, 1183-1225 (2005) · Zbl 1161.74497
[49] Dassault Systèmes Simulia Corporation, Abaqus 6.14, Analysis Users’s Guide, Volume IV: Elements, 2013, Providence, Rhode Island, USA.; Dassault Systèmes Simulia Corporation, Abaqus 6.14, Analysis Users’s Guide, Volume IV: Elements, 2013, Providence, Rhode Island, USA.
[50] Taylor, R. L.; Papadopoulos, P., On a patch test for contact problems in two dimensions, (Wriggers, P.; Wagner, W., Computational Methods in Nonlinear Mechanics (1991), Springer-Verlag: Springer-Verlag Berlin), 690-702 · Zbl 0746.73020
[51] Crisfield, M. A., Re-visiting the contact patch test, Internat. J. Numer. Methods Engrg., 48, 3, 435-449 (2000) · Zbl 0969.74062
[52] Tur, M.; Giner, E.; Fuenmayor, F. J.; Wriggers, P., 2D contact smooth formulation based on the mortar method, Comput. Methods Appl. Mech. Engrg., 247, 1 November, 1-14 (2012) · Zbl 1352.74443
[53] McDevitt, T.; Laursen, T., A mortar-finite element formulation for frictional contact problems, Internat. J. Numer. Methods Engrg., 48, 10, 1525-1547 (2000) · Zbl 0972.74067
[54] Chandrasekaran, N.; Haisler, W. E.; Goforth, R. E., Finite element analysis of Hertz contact problem with friction, Finite Elem. Anal. Des., 3, 1, 39-56 (1987) · Zbl 0608.73116
[55] Nowell, D.; Hills, D., Mechanics of fretting fatigue tests, Int. J. Mech. Sci., 29, 5, 355-365 (1987) · Zbl 0608.73114
[56] Lauterbach, B.; Gross, D., Crack growth in brittle solids under compression, Mech. Mater., 29, 2, 81-92 (1998) · Zbl 0925.73711
[57] Song, C.; Tin-Loi, F.; Gao, W., A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges, Eng. Fract. Mech., 77, 12, 2316-2336 (2010)
[58] Zhu, Z.; Wang, L.; Mohanty, B.; Huang, C., Stress intensity factor for a cracked specimen under compression, Eng. Fract. Mech., 73, 4, 482-489 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.