×

Gaussian regularization of the pseudospectrum and Davies’ conjecture. (English) Zbl 1480.15014

Let \(A=UDU^{-1}\in \mathbb{C}^{n\times n}\) where \[D=\begin{pmatrix}\lambda_1&&\\ &\ddots&\\ &&\lambda_n\end{pmatrix}\] be a diagonalizable matrix with eigenvalues \(\lambda_1,\ldots,\lambda_n.\) The eigenvector condition number of \(A\) is defined as \[\kappa_V(A):=\inf_{A=VDV^{-1}}\|V\|\|V^{-1}\|.\] If \(\lambda_1,\ldots,\lambda_n\) are distinct, then the eigenvalue condition number of \(\lambda_i\) is defined as \[\kappa(\lambda_i):=\|v_i\|\|w_i\|\] where \(v_i\) is the \(i\)-th column of \(U\) and \(w_i^*\) is the \(i\)-th row of \(U^{-1}\) .
In this paper, the authors study the following question posed by E. B. Davies [SIAM J. Matrix Anal. Appl. 29, No. 4, 1051–1064 (2008; Zbl 1157.65024)]: how well can an arbitrary matrix be approximated by one with a small eigenvector condition number?
They give an answer in Theorem 1.1 which is an improvement to a result in [loc. cit.].
Theorem. Suppose that \(A\in \mathbb{C}^{n\times n}\) and \(\delta\in(0,1)\). Then there is a matrix \(E\in \mathbb{C}^{n\times n}\) such that \(\|E\|\le\delta\|A\|\) and \[\kappa_V(A+E)\le 4n^{3/2}\left(1+\frac{1}{\delta}\right).\]
Consequently, they confirme a conjecture given in [loc. cit.].
Conjecture. For every positive integer \(n\) there is a constant \(c_n\) such that for every \(A\in \mathbb{C}^{n\times n}\) with \(\|A\|\le 1\) and \(\varepsilon\in(0,1)\), \[\inf_{E\mathbb{C}^{n\times n}}(\kappa_V(A+E)\varepsilon+\|E\|)\le c_n\sqrt{\varepsilon}.\]
They also state Theorem 1.5 which concerns the eigenvalue condition numbers. Theorem 1.5 shows that adding a small Ginibre perturbation regularizes the eigenvalue condition numbers of any matrix in an averaged sense.
Theorem. Suppose that \(A\in \mathbb{C}^{n\times n}\) with \(\|A\|\le 1\) and \(\delta\in(0,1)\). Let \(G_n\) be a complex Ginibre matrix, and let \(\lambda_1,\ldots,\lambda_n\in C\) be the (random) eigenvalues of \(A+\delta G_n\). Then for every measureable open set \(B\subset \mathbb{C}\), \[\mathbb{E}\sum_{\lambda_i\in B}\kappa(\lambda_i)^2\le \frac{n^2}{\pi\delta^2}\mathrm{Vol}(B).\]
Section 2 is the preparation work for the proofs, given in Section 3. Along the way, they give a proof to Śniady’s comparison theorem (Theorem 2.3) and adopt the technique to prove Theorem 2.4, which is the real version of Theorem 2.3. The details of the proof of Theorem 2.4 are in the appendix. A consequence of Theorem 2.4 is Proposition 2.5, which is a conjecture of A. Sankar et al. [SIAM J. Matrix Anal. Appl. 28, No. 2, 446–476 (2006; Zbl 1179.65033)].
Proposition. Let \(G\) be an \(n\times n\) matrix with i.i.d. real \(N(0,1)\) entries and \(A\) be any \(n\times n\) matrix with real entries. Then \[\mathbb{P}[\sigma_n(A+G)<\varepsilon]\le\varepsilon\sqrt{n}.\]
In Section 4, the authors show that the bound in Theorem 1.1 is the best possible for large \(n\). In Section 5, they pose some questions for further studies.

MSC:

15A20 Diagonalization, Jordan forms
15A18 Eigenvalues, singular values, and eigenvectors
15B52 Random matrices (algebraic aspects)
60B20 Random matrices (probabilistic aspects)

References:

[1] Al‐Mohy, A. H.; Higham, N. J.; Relton, S. D.Computing the Fréchet derivative of the matrix logarithm and estimating the condition number. SIAM J. Sci. Comput.35 (2013), no. 4, C394-C410. doi: https://doi.org/10.1137/120885991 · Zbl 1362.65051 · doi:10.1137/120885991
[2] Al‐Mohy, A. H.; Higham, N. J.; Relton, S. D.New algorithms for computing the matrix sine and cosine separately or simultaneously. SIAM J. Sci. Comput.37 (2015), no. 1, A456-A487. doi: https://doi.org/10.1137/140973979 · Zbl 1315.65045 · doi:10.1137/140973979
[3] Anderson, G. W.; Guionnet, A.; Zeitouni, O.An introduction to random matrices. Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge, 2010. · Zbl 1184.15023
[4] Basak, A.; Paquette, E.; Zeitouni, O. Spectrum of random perturbations of Toeplitz matrices with finite symbols. Preprint, 2018. arXiv: 1812.06207 [math.PR]
[5] Basak, A.; Paquette, E.; Zeitouni, O.Regularization of non‐normal matrices by Gaussian noise‐the banded Toeplitz and twisted Toeplitz cases. Forum Math. Sigma7 (2019), e3, 72 pp. doi: https://doi.org/10.1017/fms.2018.29 · Zbl 1480.60007 · doi:10.1017/fms.2018.29
[6] Bauer, F. L.; Fike, C. T.Norms and exclusion theorems. Numer. Math.2 (1960), 137-141. doi: https://doi.org/10.1007/BF01386217 · Zbl 0101.25503 · doi:10.1007/BF01386217
[7] Benaych‐Georges, F.; Zeitouni, O. Eigenvectors of non normal random matrices. Electron. Commun. Probab. 23 (2018), Paper No. 70, 12 pp. doi: 10.1214/18‐ECP171 · Zbl 1403.15029
[8] Bourgade, P.; Dubach, G. The distribution of overlaps between eigenvectors of Ginibre matrices. Preprint, 2018. arXiv: 1801.01219 [math.PR] · Zbl 1451.60015
[9] Bru, M.‐F.Diffusions of perturbed principal component analysis. J. Multivariate Anal.29 (1989), no. 1, 127-136. doi: https://doi.org/10.1016/0047‐259X(89)90080‐8 · Zbl 0687.62048 · doi:10.1016/0047‐259X(89)90080‐8
[10] Bru, M.‐F.Wishart processes. J. Theoret. Probab.4 (1991), no. 4, 725-751. doi: https://doi.org/10.1007/BF01259552 · Zbl 0737.60067 · doi:10.1007/BF01259552
[11] Chalker, J. T.; Mehlig, B. Eigenvector statistics in non‐Hermitian random matrix ensembles. Phys. Rev. Lett. 81 (1998), no. 16, 3367. doi: 10.1103/PhysRevLett.81.3367 · Zbl 0977.82023
[12] Davidson, K.; Herrero, D.; Salinas, N.Quasidiagonal operators, approximation, and C*-algebras. Indiana Univ. Math. J.38 (1989), no. 4, 973-998. doi: https://doi.org/10.1007/978‐3‐662‐06400‐9 · Zbl 0675.41052 · doi:10.1007/978‐3‐662‐06400‐9
[13] Davidson, K. R.; Szarek, S. J. Local operator theory, random matrices and Banach spaces. Handbook of the geometry of Banach spaces: Volume 1, 317-366. Elsevier, Amsterdam, 2001. · Zbl 1067.46008
[14] Davies, E. B.Approximate diagonalization. SIAM J. Matrix Anal. Appl.29 (2007), no. 4, 1051-1064. doi: https://doi.org/10.1137/060659909 · Zbl 1157.65024 · doi:10.1137/060659909
[15] Davies, E. B.; Hager, M.Perturbations of Jordan matrices. J. Approx. Theory156 (2009), no. 1, 82-94. doi: https://doi.org/10.1016/j.jat.2008.04.021 · Zbl 1164.15004 · doi:10.1016/j.jat.2008.04.021
[16] Defez, E.; Ibáñez, J.; Peinado, J.; Sastre, J.; Alonso‐Jordá, P.An efficient and accurate algorithm for computing the matrix cosine based on new Hermite approximations. J. Comput. Appl. Math.348 (2019), 1-13. doi: https://doi.org/10.1016/j.cam.2018.08.047 · Zbl 1458.65048 · doi:10.1016/j.cam.2018.08.047
[17] Demmel, J. W. A numerical analyst’s Jordan canonical form. Technical report, U. C. Berkeley Center for Pure and Applied Mathematics, 1983. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a130775.pdf .
[18] Demni, N.The Laguerre process and generalized Hartman‐Watson law. Bernoulli13 (2007), no. 2, 556-580. doi: https://doi.org/10.3150/07‐BEJ6048 · Zbl 1139.60037 · doi:10.3150/07‐BEJ6048
[19] Ding, X.; Wu, Rangquan. A new proof for comparison theorems for stochastic differential inequalities with respect to semimartingales. Stochastic Process. Appl.78 (1998), no. 2, 155-171. doi: https://doi.org/10.1016/S0304‐4149(98)00051‐9 · Zbl 0934.60053 · doi:10.1016/S0304‐4149(98)00051‐9
[20] Edelman, A.Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl.9 (1988), no. 4, 543-560. doi: https://doi.org/10.1137/0609045 · Zbl 0678.15019 · doi:10.1137/0609045
[21] Feldheim, O. N.; Paquette, E.; Zeitouni, O. Regularization of non‐normal matrices by Gaussian noise. Int. Math. Res. Not. IMRN (2015), no. 18, 8724-8751. doi: 10.1093/imrn/rnu213 · Zbl 1330.60015
[22] Fyodorov, Y. V.On statistics of bi‐orthogonal eigenvectors in real and complex Ginibre ensembles: combining partial Schur decomposition with supersymmetry. Comm. Math. Phys.363 (2018), no. 2, 579-603. doi: https://doi.org/10.1007/s00220‐018‐3163‐3 · Zbl 1448.60022 · doi:10.1007/s00220‐018‐3163‐3
[23] Geiß, C.; Manthey, R.Comparison theorems for stochastic differential equations in finite and infinite dimensions. Stochastic Process. Appl.53 (1994), no. 1, 23-35. doi: https://doi.org/10.1016/0304‐4149(94)90055‐8 · Zbl 0809.60074 · doi:10.1016/0304‐4149(94)90055‐8
[24] Graczyk, P.; Małecki, J. Strong solutions of non‐colliding particle systems. Electron. J. Probab. 19 (2014), no. 119, 21pp. doi: 10.1214/EJP.v19‐3842 · Zbl 1307.60079
[25] Guionnet, A.; Wood, P.; Zeitouni, O.Convergence of the spectral measure of non‐normal matrices. Proc. Amer. Math. Soc.142 (2014), no. 2, 667-679. doi: https://doi.org/10.1090/S0002‐9939‐2013‐11761‐2 · Zbl 1302.60020 · doi:10.1090/S0002‐9939‐2013‐11761‐2
[26] Haagerup, U.; Larsen, F.Brown’s spectral distribution measure for R‐diagonal elements in finite von Neumann algebras. J. Funct. Anal.176 (2000), no. 2, 331-367. doi: https://doi.org/10.1006/jfan.2000.3610 · Zbl 0984.46042 · doi:10.1006/jfan.2000.3610
[27] Higham, N. J.; Lin, L.An improved Schur‐Padé algorithm for fractional powers of a matrix and their Fréchet derivatives. SIAM J. Matrix Anal. Appl.34 (2013), no. 3, 1341-1360. doi: https://doi.org/10.1137/130906118 · Zbl 1279.65050 · doi:10.1137/130906118
[28] König, W.; O’Connell, N.Eigenvalues of the Laguerre process as non‐colliding squared Bessel processes. Electron. Comm. Probab.6 (2001), 107-114. doi: https://doi.org/10.1214/ECP.v6‐1040 · Zbl 1011.15012 · doi:10.1214/ECP.v6‐1040
[29] Krasin, V. Comparison theorem and its applications to finance. Ph.D. thesis, University of Alberta, Edmonton, Alberta, 2010. 105 pp. ISBN: 978‐0494‐62892‐8, ProQuest LLC
[30] Le, H.Brownian motions on shape and size‐and‐shape spaces. J. Appl. Probab31 (1994), no. 1, 101-113. doi: https://doi.org/10.2307/3215238 · Zbl 0797.58093 · doi:10.2307/3215238
[31] Le, H.Singular‐values of matrix‐valued Ornstein‐Uhlenbeck processes. Stochastic Process. Appl.82 (1999), no. 1, 53-60. doi: https://doi.org/10.1016/S0304‐4149(99)00007‐1 · Zbl 0997.60120 · doi:10.1016/S0304‐4149(99)00007‐1
[32] Mitrinović, D. S.; Pečarić, J. E.; Fink, A. M. Inequalities involving functions and their integrals and derivatives. Mathematics and Its Applications (East European Series), 53. Kluwer Academic Publishers Group, Dordrecht, 1991. doi: 10.1007/978‐94‐011‐3562‐7Z · Zbl 0744.26011
[33] Nadukandi, P.; Higham, N. J.Computing the wave‐kernel matrix functions. SIAM J. Sci. Comput.40 (2018), no. 6, A4060-A4082. doi: https://doi.org/10.1137/18M1170352 · Zbl 1403.65020 · doi:10.1137/18M1170352
[34] Revuz, D.; Yor, M.Continuous martingales and Brownian motion, Third edition. Grundlehren der Mathematischen Wissenschaften, 293. Springer‐Verlag, Berlin, 1994. doi: 10.1007/978‐3‐662‐06400‐9 · Zbl 0804.60001
[35] Ruhe, A.Closest normal matrix finally found!BIT27 (1987), no. 4, 585-598. doi: https://doi.org/10.1007/BF01937278 · Zbl 0636.15017 · doi:10.1007/BF01937278
[36] Sankar, A.; Spielman, D. A.; Teng, S.‐H.Smoothed analysis of the condition numbers and growth factors of matrices. SIAM J. Matrix Anal. Appl.28 (2006), no. 2, 446-476. doi: https://doi.org/10.1137/S0895479803436202 · Zbl 1179.65033 · doi:10.1137/S0895479803436202
[37] Sjöstrand, J.; Vogel, M. General Toeplitz matrices subject to Gaussian perturbations. Preprint, 2019. arXiv: 1905.10265 [math.SP]
[38] Sjöstrand, J.; Vogel, M. Toeplitz band matrices with small random perturbations. Preprint, 2019. arXiv: 1901.08982 [math.SP]
[39] Śniady, P.Random regularization of Brown spectral measure. J. Funct. Anal.193 (2002), no. 2, 291-313. doi: https://doi.org/10.1006/jfan.2001.3935 · Zbl 1026.46056 · doi:10.1006/jfan.2001.3935
[40] Trefethen, L. N.; Embree, M.Spectra and pseudospectra. The behavior of nonnormal matrices and operators. Princeton University Press, Princeton, N.J., 2005. · Zbl 1085.15009
[41] Wright, T. G.; Trefethen, L.Eigtool. Software available at: http://www.comlab.ox.ac.uk/pseudospectra/eigtool.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.