×

Moment inequalities for sums of weakly dependent random fields. (English) Zbl 1542.60019

Summary: We derive both Azuma-Hoeffding and Burkholder-type inequalities for partial sums over a rectangular grid of dimension \(d\) of a random field satisfying a weak dependency assumption of projective type: the difference between the expectation of an element of the random field and its conditional expectation given the rest of the field at a distance more than \(\delta\) is bounded, in \(L_p\) distance, by a known decreasing function of \(\delta \). The analysis is based on the combination of a multi-scale approximation of random sums by martingale difference sequences, and of a careful decomposition of the domain. The obtained results extend previously known bounds under comparable hypotheses, and do not use the assumption of commuting filtrations.

MSC:

60E15 Inequalities; stochastic orderings
60G60 Random fields

References:

[1] Azuma, K. (1967). Weighted sums of certain dependent random variables. Tohoku Math. J. (2) 19 357-367. 10.2748/tmj/1178243286 MathSciNet: MR0221571 · Zbl 0178.21103
[2] Basu, A.K. and Dorea, C.C.Y. (1979). On functional central limit theorem for stationary martingale random fields. Acta Math. Acad. Sci. Hung. 33 307-316. 10.1007/BF01902565 MathSciNet: MR0542479 · Zbl 0431.60037
[3] Bickel, P.J. and Bühlmann, P. (1999). A new mixing notion and functional central limit theorems for a sieve bootstrap in time series. Bernoulli 5 413-446. 10.2307/3318711 MathSciNet: MR1693612 · Zbl 0954.62102
[4] Biermé, H. and Durieu, O. (2014). Invariance principles for self-similar set-indexed random fields. Trans. Amer. Math. Soc. 366 5963-5989. 10.1090/S0002-9947-2014-06135-7 MathSciNet: MR3256190 · Zbl 1330.60055
[5] Cairoli, R. and Walsh, J.B. (1975). Stochastic integrals in the plane. Acta Math. 134 111-183. 10.1007/BF02392100 zbMATH: 0334.60026 MathSciNet: MR0420845 · Zbl 0334.60026
[6] Dedecker, J. (1998). A central limit theorem for stationary random fields. Probab. Theory Related Fields 110 397-426. 10.1007/s004400050153 MathSciNet: MR1616496 · Zbl 0902.60020
[7] Dedecker, J. (2001). Exponential inequalities and functional central limit theorems for a random fields. ESAIM Probab. Stat. 5 77-104. 10.1051/ps:2001103 MathSciNet: MR1875665 · Zbl 1003.60033
[8] Dedecker, J. (2020). Personal communication.
[9] Dedecker, J. and Merlevède, F. (2015). Moment bounds for dependent sequences in smooth Banach spaces. Stochastic Process. Appl. 125 3401-3429. 10.1016/j.spa.2015.05.002 MathSciNet: MR3357614 · Zbl 1318.60028
[10] Dedecker, J. and Prieur, C. (2005). New dependence coefficients. Examples and applications to statistics. Probab. Theory Related Fields 132 203-236. 10.1007/s00440-004-0394-3 MathSciNet: MR2199291 · Zbl 1061.62058
[11] Dedecker, J., Doukhan, P., Lang, G., León, J.R., Louhichi, S. and Prieur, C. (2007). Weak Dependence: With Examples and Applications. Lecture Notes in Statistics 190. New York: Springer. MathSciNet: MR2338725 · Zbl 1165.62001
[12] Dehling, H. and Philipp, W. (1982). Almost sure invariance principles for weakly dependent vector-valued random variables. Ann. Probab. 10 689-701. MathSciNet: MR0659538 · Zbl 0487.60006
[13] Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statistics 85. New York: Springer. 10.1007/978-1-4612-2642-0 MathSciNet: MR1312160 · Zbl 0801.60027
[14] Doukhan, P., León, J. and Portal, F. (1984). Vitesse de convergence dans le théorème central limite pour des variables aléatoires mélangeantes à valeurs dans un espace de Hilbert. C. R. Acad. Sci. Paris Sér. I Math. 298 305-308. MathSciNet: MR0765429 · Zbl 0557.60006
[15] El Machkouri, M. and Giraudo, D. (2016). Orthomartingale-coboundary decomposition for stationary random fields. Stoch. Dyn. 16 1650017. 10.1142/S0219493716500179 MathSciNet: MR3522451 · Zbl 1346.60069
[16] El Machkouri, M., Volný, D. and Wu, W.B. (2013). A central limit theorem for stationary random fields. Stochastic Process. Appl. 123 1-14. 10.1016/j.spa.2012.08.014 MathSciNet: MR2988107 · Zbl 1308.60025
[17] Fazekas, I. (2005). Burkholder’s inequality for multiindex martingales. Ann. Math. Inform. 32 45-51. MathSciNet: MR2264866 · Zbl 1111.60025
[18] Giraudo, D. (2018). Invariance principle via orthomartingale approximation. Stoch. Dyn. 18 1850043. 10.1142/S0219493718500430 MathSciNet: MR3869881 · Zbl 1417.60017
[19] Giraudo, D. (2019). Deviation inequalities for Banach space valued martingales differences sequences and random fields. ESAIM Probab. Stat. 23 922-946. 10.1051/ps/2019016 MathSciNet: MR4046858 · Zbl 1506.60008
[20] Giraudo, D. (2021a). Maximal function associated to the bounded law of the iterated logarithms via orthomartingale approximation. J. Math. Anal. Appl. 496 124792. 10.1016/j.jmaa.2020.124792 MathSciNet: MR4186670 · Zbl 1457.60072
[21] Giraudo, D. (2021b). An exponential inequality for orthomartingale differences random fields and some applications. Available at arXiv:2106.13128.
[22] Giraudo, D. (2022). Bound on the maximal function associated to the law of the iterated logarithms for Bernoulli random fields. Stochastics 94 248-276. 10.1080/17442508.2021.1920942 MathSciNet: MR4372657 · Zbl 1492.60141
[23] Gundy, R.F. and Varopoulos, N.T. (1976). A martingale that occurs in harmonic analysis. Ark. Mat. 14 179-187. 10.1007/BF02385833 MathSciNet: MR0448539 · Zbl 0371.60058
[24] Khoshnevisan, D. (2002). Multiparameter Processes. an Introduction to Random Fields. Springer Monographs in Mathematics. New York: Springer. 10.1007/b97363 MathSciNet: MR1914748 · Zbl 1005.60005
[25] Klicnarová, J., Volný, D. and Wang, Y. (2016). Limit theorems for weighted Bernoulli random fields under Hannan’s condition. Stochastic Process. Appl. 126 1819-1838. 10.1016/j.spa.2015.12.006 MathSciNet: MR3483738 · Zbl 1336.60069
[26] Maume-Deschamps, V. (2006). Exponential inequalities and functional estimations for weak dependent data; applications to dynamical systems. Stoch. Dyn. 6 535-560. 10.1142/S0219493706001876 MathSciNet: MR2285515 · Zbl 1130.37319
[27] McLeish, D.L. (1975). Invariance principles for dependent variables. Z. Wahrsch. Verw. Gebiete 32 165-178. 10.1007/BF00532611 MathSciNet: MR0388483 · Zbl 0288.60034
[28] Métraux, C. (1978). Quelques inégalités pour martingales à paramètre bidimensionnel. In Séminaire de Probabilités, XII (Univ. Strasbourg, Strasbourg, 1976/1977). Lecture Notes in Math. 649 170-179. Berlin: Springer. MathSciNet: MR0520006 · Zbl 0381.60042
[29] Peligrad, M. and Utev, S. (2005). A new maximal inequality and invariance principle for stationary sequences. Ann. Probab. 33 798-815. 10.1214/009117904000001035 MathSciNet: MR2123210 · Zbl 1070.60025
[30] Peligrad, M., Utev, S. and Wu, W.B. (2007). A maximal \(\mathbb{L}_p\)-inequality for stationary sequences and its applications. Proc. Amer. Math. Soc. 135 541-550. 10.1090/S0002-9939-06-08488-7 MathSciNet: MR2255301 · Zbl 1107.60011
[31] Pinelis, I. (1994). Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab. 22 1679-1706. Digital Object Identifier: 10.1214/aop/1176988477 Google Scholar: Lookup Link MathSciNet: MR1331198 Euclid: euclid.aop/1176988477 zbMATH: 0836.60015 · Zbl 0836.60015 · doi:10.1214/aop/1176988477
[32] Rio, E. (1993). Covariance inequalities for strongly mixing processes. Ann. Inst. Henri Poincaré Probab. Stat. 29 587-597. MathSciNet: MR1251142 · Zbl 0798.60027
[33] Rio, E. (2000). Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants. Mathématiques & Applications (Berlin) [Mathematics & Applications] 31. Berlin: Springer. MathSciNet: MR2117923 · Zbl 0944.60008
[34] Rio, E. (2009). Moment inequalities for sums of dependent random variables under projective conditions. J. Theoret. Probab. 22 146-163. 10.1007/s10959-008-0155-9 MathSciNet: MR2472010 · Zbl 1160.60312
[35] Sang, H. and Xiao, Y. (2018). Exact moderate and large deviations for linear random fields. J. Appl. Probab. 55 431-449. 10.1017/jpr.2018.28 MathSciNet: MR3832897 · Zbl 1401.60047
[36] Volný, D. (2015). A central limit theorem for fields of martingale differences. C. R. Math. Acad. Sci. Paris 353 1159-1163. 10.1016/j.crma.2015.09.017 MathSciNet: MR3427925 · Zbl 1333.60036
[37] Wu, W.B. (2005). Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102 14150-14154. 10.1073/pnas.0506715102 MathSciNet: MR2172215 · Zbl 1135.62075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.