×

Orthomartingale-coboundary decomposition for stationary random fields. (English) Zbl 1346.60069

Summary: We provide a new projective condition for a stationary real random field indexed by the lattice \(\mathbb{Z}^d\) to be well approximated by an orthomartingale in the sense of R. Cairoli [C. R. Acad. Sci., Paris, Sér. A 269, 587–589 (1969; Zbl 0181.44201)]. Our main result can be viewed as a multidimensional version of the martingale-coboundary decomposition method, the idea of which goes back to M. I. Gordin [Sov. Math., Dokl. 10, 1174–1176 (1969); translation from Dokl. Akad. Nauk SSSR 188, 739–741 (1969; Zbl 0212.50005)]. It is a powerful tool for proving limit theorems or large deviations inequalities for stationary random fields when the corresponding result is valid for orthomartingales.

MSC:

60G60 Random fields
60G48 Generalizations of martingales
60G10 Stationary stochastic processes
60F10 Large deviations

References:

[1] 1. A. K. Basu and C. C. Y. Dorea, On functional central limit theorem for stationary martingale random fields, Acta Math. Acad. Sci. Hungar.33 (1979) 307-316. genRefLink(16, ’S0219493716500179BIB001’, ’10.1007 · Zbl 0431.60037
[2] 2. H. Biermé and O. Durieu, Invariance principles for self-similar set-indexed random fields, Trans. Amer. Math. Soc.366 (2014) 5963-5989. genRefLink(16, ’S0219493716500179BIB002’, ’10.1090
[3] 3. P. Billingsley, Convergence of Probability Measures (John Wiley & Sons, 1968). · Zbl 0172.21201
[4] 4. P. Billingsley, The Lindeberg-Lévy theorem for martingales, Proc. Amer. Math. Soc.12 (1961) 788-792. · Zbl 0129.10701
[5] 5. R. Cairoli, Un théorème de convergence pour martingales à indices multiples, C. R. Acad. Sci. Paris Sér. A-B269 (1969) A587-A589. genRefLink(128, ’S0219493716500179BIB005’, ’A1969YZ04500012’); · Zbl 0181.44201
[6] 6. J. Dedecker, Exponential inequalities and functional central limit theorems for a random fields, ESAIM Probab. Statist.5 (2001) 77-104. genRefLink(16, ’S0219493716500179BIB006’, ’10.1051 · Zbl 1003.60033
[7] 7. M. D. Donsker, An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc.1951 (1951) 12. · Zbl 0042.37602
[8] 8. R. M. Dudley, Sample functions of the Gaussian process, Ann. Probab.1 (1973) 66-103. genRefLink(16, ’S0219493716500179BIB008’, ’10.1214
[9] 9. M. El Machkouri and L. Ouchti, Invariance principles for standard-normalized and self-normalized random fields, ALEA Lat. Am. J. Probab. Math. Stat.2 (2006) 177-194. · Zbl 1104.60312
[10] 10. M. El Machkouri, Kahane-Khintchine inequalities and functional central limit theorem for stationary random fields, Stoch. Process. Appl.102 (2002) 285-299. genRefLink(16, ’S0219493716500179BIB010’, ’10.1016
[11] 11. M. El Machkouri, D. Volný and W. B. Wu, A central limit theorem for stationary random fields, Stoch. Process. Appl.123 (2013) 1-14. genRefLink(16, ’S0219493716500179BIB011’, ’10.1016
[12] 12. M. I. Gordin, The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR188 (1969) 739-741. · Zbl 0212.50005
[13] 13. P. Hall and C. C. Heyde, Martingale Limit Theory and Its Application (Academic Press, 1980). · Zbl 0462.60045
[14] 14. I. A. Ibragimov, A central limit theorem for a class of dependent random variables, Teor. Verojatnost. i Primenen.8 (1963) 89-94. · Zbl 0123.36103
[15] 15. D. Khoshnevisan, Multiparameter Processes (Springer-Verlag, 2002). genRefLink(16, ’S0219493716500179BIB015’, ’10.1007
[16] 16. J. Klicnarová, Central limit theorem for Hölder processes on \(\mathbb{R}\)m-unit cube, Comment. Math. Univ. Carolin.48 (2007) 83-91. · Zbl 1199.60101
[17] 17. M. A. Krasnoseĺskiĭ and Ja. B. Rutickiĭ, Convex Functions and Orlicz Spaces, translated from the first Russian edition by Leo F. Boron (P. Noordhoff Ltd., 1961).
[18] 18. J. Kuelbs, The invariance principle for a lattice of random variables, Ann. Math. Statist.39 (1968) 382-389. genRefLink(16, ’S0219493716500179BIB018’, ’10.1214 · Zbl 0164.46401
[19] 19. B. S. Nahapetian and A. N. Petrosian, Martingale-difference Gibbs random fields and central limit theorem, Ann. Acad. Sci. Fenn. Ser. A I Math.17 (1992) 105-110. genRefLink(16, ’S0219493716500179BIB019’, ’10.5186 · Zbl 0789.60043
[20] 20. A. Račkauskas, C. Suquet and V. Zemlys, A Hölderian functional central limit theorem for a multi-indexed summation process, Stoch. Process. Appl.117 (2007) 1137-1164. genRefLink(16, ’S0219493716500179BIB020’, ’10.1016
[21] 21. D. Volný, Approximating martingales and the central limit theorem for strictly stationary processes, Stoch. Process. Appl.44 (1993) 41-74. genRefLink(16, ’S0219493716500179BIB021’, ’10.1016
[22] 22. D. Volný and Y. Wang, An invariance principle for stationary random fields under Hannan’s condition, Stoch. Process. Appl.124 (2014) 4012-4029. genRefLink(16, ’S0219493716500179BIB022’, ’10.1016
[23] 23. Y. Wang and M. Woodroofe, A new condition for the invariance principle for stationary random fields, Statist. Sinica23 (2013) 1673-1696. genRefLink(128, ’S0219493716500179BIB023’, ’000339125900013’);
[24] 24. M. J. Wichura, Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters, Ann. Math. Statist.40 (1969) 681-687. genRefLink(16, ’S0219493716500179BIB024’, ’10.1214 · Zbl 0214.17701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.