×

Finite-time reentry attitude control using time-varying sliding mode and disturbance observer. (English) Zbl 1394.93241

Summary: This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.

MSC:

93C95 Application models in control theory
93B07 Observability
93B12 Variable structure systems
Full Text: DOI

References:

[1] Shen, Z.; Lu, P., Onboard generation of three-dimensional constrained entry trajectories, Journal of Guidance, Control, and Dynamics, 26, 1, 111-121, (2003) · doi:10.2514/2.5021
[2] Smith, R.; Ahmed, A., Robust parametrically varying attitude controller designs for the X-33 vehicle, AIAA Guidance, Navigation, and Control Conference and Exhibit
[3] Rugh, W. J.; Shamma, J. S., Research on gain scheduling, Automatica, 36, 10, 1401-1425, (2000) · Zbl 0976.93002 · doi:10.1016/S0005-1098(00)00058-3
[4] Leith, D. J.; Leithead, W. E., Survey of gain-scheduling analysis and design, International Journal of Control, 73, 11, 1001-1025, (2000) · Zbl 1006.93534 · doi:10.1080/002071700411304
[5] Agustin, R. M.; Mangoubi, R. S.; Hain, R. M.; Adams, N. J., Robust failure detection for reentry vehicle attitude control systems, Journal of Guidance, Control, and Dynamics, 22, 6, 839-845, (1999) · doi:10.2514/2.4461
[6] Lu, P., Regulation about time-varying trajectories: precision entry guidance illustrated, Journal of Guidance, Control, and Dynamics, 22, 6, 784-790, (1999) · doi:10.2514/2.4479
[7] Rahideh, A.; Bajodah, A. H.; Shaheed, M. H., Real time adaptive nonlinear model inversion control of a twin rotor MIMO system using neural networks, Engineering Applications of Artificial Intelligence, 25, 6, 1289-1297, (2012) · doi:10.1016/j.engappai.2011.12.006
[8] van Soest, W. R.; Chu, Q. P.; Mulder, J. A., Combined feedback linearization and constrained model predictive control for entry flight, Journal of Guidance, Control, and Dynamics, 29, 2, 427-434, (2006) · doi:10.2514/1.14511
[9] Xu, H.; Mirmirani, M. D.; Ioannou, P. A., Adaptive sliding mode control design for a hypersonic flight vehicle, Journal of Guidance, Control, and Dynamics, 27, 5, 829-838, (2004) · doi:10.2514/1.12596
[10] Da Costa, R. R.; Chu, Q. P.; Mulder, J. A., Reentry flight controller design using nonlinear dynamic inversion, Journal of Spacecraft and Rockets, 40, 1, 64-71, (2003) · doi:10.2514/2.3916
[11] Young, K. D.; Utkin, V. I.; Özgüner, Ü., A control engineer’s guide to sliding mode control, IEEE Transactions on Control Systems Technology, 7, 3, 328-342, (1999) · doi:10.1109/87.761053
[12] Pisano, A.; Usai, E., Sliding mode control: a survey with applications in math, Mathematics and Computers in Simulation, 81, 5, 954-979, (2011) · Zbl 1214.93030 · doi:10.1016/j.matcom.2010.10.003
[13] Hung, J. Y.; Gao, W.; Hung, J. C., Variable structure control: a survey, IEEE Transactions on Industrial Electronics, 40, 1, 2-22, (1993) · doi:10.1109/41.184817
[14] Barambones Caramazana, O.; Alkorta Egiguren, P.; González de Durana García, J. M., Sliding mode position control for real-time control of induction motors, International Journal of Innovative Computing, Information and Control, 9, 2741-2754, (2013)
[15] Wu, L.; Su, X.; Shi, P., Sliding mode control with bounded L_{2} gain performance of Markovian jump singular time-delay systems, Automatica, 48, 8, 1929-1933, (2012) · Zbl 1268.93037 · doi:10.1016/j.automatica.2012.05.064
[16] Shtessel, Y.; Tournes, C.; Krupp, D., Reusable launch vehicle control in sliding modes, Proceedings of the Guidance, Navigation, and Control Conference, American Institute of Aeronautics and Astronautics
[17] Shtessel, Y.; McDuffie, J.; Jackson, M., Sliding mode control of the X-33 vehicle in launch and re-entry modes in, Proceedings of the Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics
[18] Shtessel, Y.; Hall, C.; Jackson, M., Reusable launch vehicle control in multiple-time-scale sliding modes, Journal of Guidance, Control, and Dynamics, 23, 6, 1013-1020, (2000) · doi:10.2514/2.4669
[19] Shtessel, Y.; Zhu, J.; Dan, D., Reusable launch vehicle attitude control using time-varying sliding modes, Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics
[20] Defoort, M.; Floquet, T.; Kokosy, A.; Perruquetti, W., A novel higher order sliding mode control scheme, Systems & Control Letters, 58, 2, 102-108, (2009) · Zbl 1155.93349 · doi:10.1016/j.sysconle.2008.09.004
[21] Wu, L.; Zheng, W. X.; Gao, H., Dissipativity-based sliding mode control of switched stochastic systems, IEEE Transactions on Automatic Control, 58, 3, 785-791, (2013) · Zbl 1369.93585 · doi:10.1109/TAC.2012.2211456
[22] Sun, H.; Li, S.; Sun, C., Finite time integral sliding mode control of hypersonic vehicles, Nonlinear Dynamics, 73, 1-2, 229-244, (2013) · Zbl 1281.70016 · doi:10.1007/s11071-013-0780-4
[23] Soltanpour, M. R.; Zolfaghari, B.; Soltani, M.; Khooban, M. H., Fuzzy sliding mode control design for a class of nonlinear systems with structured and unstructured uncertainties, International Journal of Innovative Computing, Information and Control, 9, 7, 2713-2726, (2013)
[24] Su, X.; Shi, P.; Wu, L.; Basin, M. V., Reliable filtering with strict dissipativity for T-S fuzzy time-delay systems, IEEE Transactions on Cybernetics, (2014) · doi:10.1109/TCYB.2014.2308983
[25] Lee, H.; Utkin, V. I., Chattering suppression methods in sliding mode control systems, Annual Reviews in Control, 31, 2, 179-188, (2007) · doi:10.1016/j.arcontrol.2007.08.001
[26] Lee, H.; Kim, E.; Kang, H.-J.; Park, M., A new sliding-mode control with fuzzy boundary layer, Fuzzy Sets and Systems, 120, 1, 135-143, (2001) · Zbl 0988.93045 · doi:10.1016/S0165-0114(99)00072-X
[27] Levant, A., Higher order sliding modes and their application for controlling uncertain processes [Ph.D. thesis], (1987), Moscow, Russia: Institute for System Studies of the USSR Academy of Science, Moscow, Russia
[28] Levant, A., Sliding order and sliding accuracy in sliding mode control, International Journal of Control, 58, 6, 1247-1263, (1993) · Zbl 0789.93063 · doi:10.1080/00207179308923053
[29] Levant, A., Robust exact differentiation via sliding mode technique, Automatica, 34, 3, 379-384, (1998) · Zbl 0915.93013 · doi:10.1016/S0005-1098(97)00209-4
[30] Bartolini, G.; Ferrara, A.; Usai, E., Output tracking control of uncertain nonlinear second-order systems, Automatica, 33, 12, 2203-2212, (1997) · Zbl 0906.93023 · doi:10.1016/S0005-1098(97)00147-7
[31] Bartolini, G.; Ferrara, A.; Usai, E., Chattering avoidance by second-order sliding mode control, IEEE Transactions on Automatic Control, 43, 2, 241-246, (1998) · Zbl 0904.93003 · doi:10.1109/9.661074
[32] Ohishi, K.; Nakao, M.; Ohnishi, K.; Miyachi, K., Microprocessor-controlled DC motor for load-insensitive position servo system, IEEE Transactions on Industrial Electronics, IE-34, 1, 44-49, (1985) · doi:10.1109/TIE.1987.350923
[33] Hall, C. E.; Shtessel, Y. B., Sliding mode disturbance observer-based control for a reusable launch vehicle, Journal of Guidance, Control, and Dynamics, 29, 6, 1315-1328, (2006) · doi:10.2514/1.20151
[34] Shtessel, Y. B.; Shkolnikov, I. A.; Levant, A., Smooth second-order sliding modes: missile guidance application, Automatica, 43, 8, 1470-1476, (2007) · Zbl 1130.93392 · doi:10.1016/j.automatica.2007.01.008
[35] D’Souza, S. N.; Sarigul-Klijn, N., Survey of planetary entry guidance algorithms, Progress in Aerospace Sciences, 68, 64-74, (2014) · doi:10.1016/j.paerosci.2014.01.002
[36] Lu, P., Entry guidance: a unified method, Journal of Guidance, Control, and Dynamics, 37, 3, 713-728, (2014) · doi:10.2514/1.62605
[37] Tian, B.; Zong, Q.; Wang, J.; Wang, F., Quasi-continuous high-order sliding mode controller design for reusable launch vehicles in reentry phase, Aerospace Science and Technology, 28, 1, 198-207, (2013) · doi:10.1016/j.ast.2012.10.015
[38] Vinh, N. X.; Busemann, A.; Culp, R. D., Hypersonic and Planetrary Entry Flight Mechanics, (1980), The University of Michigan Press
[39] Johansen, T. A.; Fossen, T. I., Control allocation—a survey, Automatica, 49, 5, 1087-1103, (2013) · Zbl 1319.93031 · doi:10.1016/j.automatica.2013.01.035
[40] Krener, A. J.; Baillieul, J.; Willems, J. C., Feedback linearization, Mathematical Control Theory, 66-98, (1999), New York, NY, USA: Springer, New York, NY, USA · Zbl 0927.93021
[41] Binglong, C.; Xiangdong, L.; Zhen, C., Exponential time-varying sliding mode control for large angle attitude eigenaxis maneuver of rigid spacecraft, Chinese Journal of Aeronautics, 23, 4, 447-453, (2010) · doi:10.1016/S1000-9361(09)60240-5
[42] Levant, A., Higher-order sliding modes, differentiation and output-feedback control, International Journal of Control, 76, 9-10, 924-941, (2003) · Zbl 1049.93014 · doi:10.1080/0020717031000099029
[43] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization, 38, 3, 751-766, (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[44] Shen, Y.; Huang, Y., Global finite-time stabilisation for a class of nonlinear systems, International Journal of Systems Science, 43, 1, 73-78, (2012) · Zbl 1259.93098 · doi:10.1080/00207721003770569
[45] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Inequalities, (1952), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0047.05302
[46] Moreno, J. A.; Osorio, M., A Lyapunov approach to second-order sliding mode controllers and observers, Proceedings of the 47th IEEE Conference on Decision and Control (CDC ’08) · doi:10.1109/CDC.2008.4739356
[47] Bollino, K. P., High-Fidelity Real-Time Trajectory Optimizaiton for Reusable Launch Vehicles, (2006), Naval Postgraduate School
[48] Doman, D. B.; Gamble, B. J.; Ngo, A. D., Quantized control allocation of reaction control jets and aerodynamic control surfaces, Journal of Guidance, Control, and Dynamics, 32, 1, 13-24, (2009) · doi:10.2514/1.37312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.