×

Bayesian mixed-frequency quantile vector autoregression: eliciting tail risks of monthly US GDP. (English) Zbl 07865847

Summary: Timely characterizations of risks in economic and financial systems play an essential role in both economic policy and private sector decisions. However, the informational content of low-frequency variables and the results from conditional mean models provide only limited evidence to investigate this problem. We propose a novel mixed-frequency quantile vector autoregression (MF-QVAR) model to address this issue. Inspired by the univariate Bayesian quantile regression literature, the multivariate asymmetric Laplace distribution is exploited under the Bayesian framework to form the likelihood. A data augmentation approach coupled with a precision sampler efficiently estimates the missing low-frequency variables at higher frequencies under the state-space representation. The proposed methods allow us to analyse conditional quantiles for multiple variables of interest and to derive quantile-related risk measures at high frequency, thus enabling timely policy interventions. The main application of the model is to detect the vulnerability in the US economy and then to nowcast conditional quantiles of the US GDP, which is strictly related to the quantification of Value-at-Risk, the Expected Shortfall and distance among percentiles of real GDP nowcasts.

MSC:

91-XX Game theory, economics, finance, and other social and behavioral sciences

Software:

GMRFLib

References:

[1] Adams, P. A.; Adrian, T.; Boyarchenko, N.; Giannone, D., Forecasting macroeconomic risks. Int. J. Forecast., 3, 1173-1191 (2021)
[2] Adrian, T.; Boyarchenko, N.; Giannone, D., Vulnerable growth. Am. Econ. Rev., 4, 1263-1289 (2019)
[3] Antolin-Diaz, J.; Drechsel, T.; Petrella, I., Advances in nowcasting economic activity: Secular trends, large shocks and new data (2021), Technical Report, CEPR Discussion Paper No. DP15926
[4] Bańbura, M.; Giannone, D.; Modugno, M.; Reichlin, L., Now-Casting and the Real-Time Data Flow. Handbook of Economic Forecasting, 195-237 (2013), Elsevier
[5] Berger, T.; Morley, J.; Wong, B., Nowcasting the output gap. J. Econom., 1, 18-34 (2023) · Zbl 07633054
[6] Bernardi, M.; Gayraud, G.; Petrella, L., Bayesian tail risk interdependence using quantile regression. Bayesian Anal., 3, 553-603 (2015) · Zbl 1335.62013
[7] Caggiano, G.; Castelnuovo, E.; Nodari, G., Uncertainty and monetary policy in good and bad times: a replication of the vector autoregressive investigation by bloom (2009). J. Appl. Econom., 1, 210-217 (2022)
[8] Carriero, A.; Clark, T. E.; Marcellino, M., Nowcasting tail risk to economic activity at a weekly frequency. J. Appl. Econom., 5, 843-866 (2022)
[9] Casarin, R.; Foroni, C.; Marcellino, M.; Ravazzolo, F., Uncertainty through the lenses of a mixed-frequency Bayesian panel Markov-switching model. Ann. Appl. Stat., 4, 2559-2586 (2018) · Zbl 1412.62197
[10] Chan, J. C., Large Bayesian vars: a flexible Kronecker error covariance structure. J. Bus. Econ. Stat., 1, 68-79 (2020)
[11] Chan, J. C.; Jeliazkov, I., Efficient simulation and integrated likelihood estimation in state space models. Int. J. Math. Model. Numer. Optim., 1-2, 101-120 (2009) · Zbl 1182.65008
[12] Chan, J. C.; Poon, A.; Zhu, D., High-dimensional conditionally Gaussian state space models with missing data. J. Econom., 1 (2023) · Zbl 07729865
[13] Chavleishvili, S.; Manganelli, S., Forecasting and stress testing with quantile vector autoregression (2021), Technical Report 2330, ECB Working Paper
[14] Cong, Y.; Chen, B.; Zhou, M., Fast simulation of hyperplane-truncated multivariate normal distributions. Bayesian Anal., 4, 1017-1037 (2017) · Zbl 1384.65014
[15] Durbin, J.; Koopman, S. J., A simple and efficient simulation smoother for state space time series analysis. Biometrika, 3, 603-616 (2002) · Zbl 1036.62071
[16] Ghysels, E., Macroeconomics and the reality of mixed frequency data. J. Econom., 2, 294-314 (2016) · Zbl 1431.62377
[17] Ghysels, E.; Santa-Clara, P.; Valkanov, R., There is a risk-return trade-off after all. J. Financ. Econ., 3, 509-548 (2005)
[18] Giannone, D.; Reichlin, L.; Small, D., Nowcasting: the real-time informational content of macroeconomic data. J. Monet. Econ., 4, 665-676 (2008)
[19] Gneiting, T.; Ranjan, R., Comparing density forecasts using threshold- and quantile-weighted scoring rules. J. Bus. Econ. Stat., 3, 411-422 (2011) · Zbl 1219.91108
[20] Hauber, P.; Schumacher, C., Precision-based sampling with missing observations: a factor model application
[21] Huber, F.; Rossini, L., Inference in Bayesian additive vector autoregressive tree models. Ann. Appl. Stat., 1, 104-123 (2022) · Zbl 1498.62309
[22] Kadiyala, K. R.; Karlsson, S., Numerical methods for estimation and inference in Bayesian var-models. J. Appl. Econom., 2, 99-132 (1997)
[23] Kaufmann, S.; Schumacher, C., Bayesian estimation of sparse dynamic factor models with order-independent and ex-post mode identification. J. Econom., 1, 116-134 (2019) · Zbl 1452.62411
[24] Kilian, L.; Vigfusson, R. J., The role of oil price shocks in causing US recessions. J. Money Credit Bank., 8, 1747-1776 (2017)
[25] Koenker, R.; Bassett, G., Regression quantiles. Econometrica, 33-50 (1978) · Zbl 0373.62038
[26] Koop, G.; McIntyre, S.; Mitchell, J.; Poon, A., Regional output growth in the United Kingdom: more timely and higher frequency estimates from 1970. J. Appl. Econom., 2, 176-197 (2020)
[27] Kotz, S.; Kozubowski, T.; Podgórski, K., The Laplace Distribution and Generalizations: a Revisit with Applications to Communications, Economics, Engineering, and Finance, vol. 183 (2001), Springer Science & Business Media · Zbl 0977.62003
[28] Mariano, R. S.; Murasawa, Y., A new coincident index of business cycles based on monthly and quarterly series. J. Appl. Econom., 4, 427-443 (2003)
[29] Merlo, L.; Petrella, L.; Raponi, V., Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation. J. Bank. Finance (2021)
[30] Mitchell, J.; Poon, A.; Zhu, D., Constructing density forecasts from quantile regressions: Multimodality in macro-financial dynamics (2023), Technical Report
[31] Mogliani, M.; Simoni, A., Bayesian MIDAS penalized regressions: estimation, selection, and prediction. J. Econom., 1, 833-860 (2021) · Zbl 1471.62422
[32] Montes-Rojas, G., Multivariate quantile impulse response functions. J. Time Ser. Anal., 739-752 (2019) · Zbl 1431.62221
[33] Neal, R. M., Slice sampling. Ann. Stat., 3, 705-767 (2003) · Zbl 1051.65007
[34] Petrella, L.; Raponi, V., Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress. J. Multivar. Anal., 70-84 (2019) · Zbl 1422.62095
[35] Polson, N. G.; Scott, J. G., Shrink globally, act locally: sparse Bayesian regularization and prediction. Bayesian Stat., 501-538, 105 (2010)
[36] Rue, H.; Held, L., Gaussian Markov Random Fields: Theory and Applications (2005), Chapman and Hall/CRC · Zbl 1093.60003
[37] Schorfheide, F.; Song, D., Real-time forecasting with a mixed-frequency VAR. J. Bus. Econ. Stat., 3, 366-380 (2015)
[38] Schorfheide, F.; Song, D.; Yaron, A., Identifying long-run risks: a Bayesian mixed-frequency approach. Econometrica, 2, 617-654 (2018) · Zbl 1419.91308
[39] Tian, Y.; Li, E.; Tian, M., Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates. Comput. Stat., 3, 1031-1057 (2016) · Zbl 1347.65034
[40] Tobias, A.; Brunnermeier, M. K., CoVaR. Am. Econ. Rev., 7, 1705 (2016)
[41] Yu, K.; Moyeed, R. A., Bayesian quantile regression. Stat. Probab. Lett., 4, 437-447 (2001) · Zbl 0983.62017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.