×

Bayesian tail risk interdependence using quantile regression. (English) Zbl 1335.62013

Summary: Recent financial disasters emphasised the need to investigate the consequences associated with the tail co-movements among institutions; episodes of contagion are frequently observed and increase the probability of large losses affecting market participants’ risk capital. Commonly used risk management tools fail to account for potential spillover effects among institutions because they only provide individual risk assessment. We contribute to the analysis of the interdependence effects of extreme events, providing an estimation tool for evaluating the co-movement Value-at-Risk. In particular, our approach relies on a Bayesian quantile regression framework. We propose a Markov chain Monte Carlo algorithm, exploiting the representation of the Asymmetric Laplace distribution as a location-scale mixture of Normals. Moreover, since risk measures are usually evaluated on time series data and returns typically change over time, we extend the model to account for the dynamics of the tail behaviour. We apply our model to a sample of U.S. companies belonging to different sectors of the Standard and Poor’s Composite Index and we provide an evaluation of the marginal contribution to the overall risk of each individual institution.

MSC:

62C10 Bayesian problems; characterization of Bayes procedures
62G32 Statistics of extreme values; tail inference
62F15 Bayesian inference
62P05 Applications of statistics to actuarial sciences and financial mathematics
91G70 Statistical methods; risk measures
91B30 Risk theory, insurance (MSC2010)

Software:

QRM; CAViaR

References:

[1] Acharya, V., Engle, R., and Richardson, M. (2012). “Capital shortfall: a new approach to ranking and regulating systemic risks.” American Economic Review , 102: 59-64.
[2] Acharya, V., Pedersen, L., Philippon, T., and Richardson, M. (2010). “Measuring Systemic Risk.” In Acharya, V., Cooley, T., Richardson, M., and Walter, I. (eds.), Regulating Wall Street: The Dodd-Frank Act and the New Architecture of Global Finance . John Wiley & Sons.
[3] Adams, Z., Füss, R., and Gropp, R. (2010). “Modeling spillover effects among financial institutions: a state-dependent sensitivity Value-at-Risk (SDSVaR) approach.” Working paper , European Business School.
[4] Adrian, T. and Brunnermeier, M. (2011). “CoVaR.” Working paper , NBER(17454).
[5] Bernardi, M. (2013). “Risk measures for skew normal mixtures.” Statistics & Probability Letters , 83: 1819-1824. · Zbl 1284.62105 · doi:10.1016/j.spl.2013.04.016
[6] Bernardi, M., Maruotti, A., and Petrella, L. (2012). “Skew mixture models for loss distributions: a Bayesian approach.” Insurance: Mathematics and Economics , 51: 617-623. · Zbl 1285.62027 · doi:10.1016/j.insmatheco.2012.08.002
[7] - (2013). “Multivariate Markov-switching models and tail risk interdependence.” arXiv.1312.6407 .
[8] Bernardi, M. and Petrella, L. (2014). “Interconnected risk contributions: a heavy-tail approach to analyse US financial sectors.” arXiv.1401.6408 .
[9] Billio, M., Getmansky, M., Lo, A., and Pellizon, L. (2012). “Econometric measures of connectedness and systemic risk in the finance and insurance sectors.” Journal of Financial Econometrics , 101: 535-559.
[10] Brownlees, C. and Engle, R. (2012). “Volatility, correlation and tails for systemic risk measurement.” Working paper , European Business School.
[11] Carter, C. and Kohn, R. (1994). “On Gibbs sampling for state space models.” Biometrika , 81: 541-553. · Zbl 0809.62087 · doi:10.1093/biomet/81.3.541
[12] - (1996). “Markov chain Monte Carlo in conditionally Gaussian state space models.” Biometrika , 83: 589-601. · Zbl 1061.62079 · doi:10.1080/10485250500039130
[13] Castro, C. and Ferrari, S. (2014). “Measuring and testing for the systemically important financial institutions.” Journal of Empirical Finance , 25: 1-14.
[14] Chao, S.-K., Härdle, W., and Chang, W. (2012). “Quantile Regression in Risk Calibration.” In Lee, C.-F. (ed.), Handbook for Financial Econometrics and Statistics . Springer Verlag.
[15] Chen, C., Gerlach, R., Hwang, B., and McAleer, M. (2012a). “Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range.” International Journal of Forecasting , 28: 557-574.
[16] Chen, C., Gerlach, R., Lin, E., and Lee, W. (2012b). “Bayesian forecasting for financial risk management, pre and post the global financial crisis.” Journal of Forecasting , 31: 661-687. · Zbl 1397.91594 · doi:10.1002/for.1237
[17] Chen, C., Lin, S., and Yu, P. (2012c). “Smooth transition quantile capital asset pricing models with heteroscedasticity.” Computational Economics , 40: 19-48. · Zbl 1282.91383 · doi:10.1007/s10614-011-9266-y
[18] Chernozhukov, V. and Du, S. (2008). “Extremal Quantiles and Value-at-Risk.” In Durlauf, S. and Blume, L. (eds.), The New Palgrave Dictionary of Economics , 1-72. Palgrave Macmillan.
[19] Christoffersen, P. (1998). “Evaluating interval forecasts.” Journal of Empirical Finance , 39: 841-862. · doi:10.2307/2527341
[20] Clarke, B. and Clarke, J. (2012). “Prediction in several conventional contexts.” Statistical survey , 6: 1-73. · Zbl 1302.62202 · doi:10.1214/12-SS100
[21] De Jong, P. (1991). “The diffuse Kalman filter.” Annals of Statistics , 19: 1073-1083. · Zbl 0742.62093 · doi:10.1214/aos/1176348139
[22] De Jong, P. and Shephard, N. (1995). “The simulation smoother for time series models.” Biometrika , 82: 339-350. · Zbl 0823.62072 · doi:10.1093/biomet/82.2.339
[23] De Rossi, G. and Harvey, A. (2009). “Quantiles, expectiles and splines.” Journal of Econometrics , 152: 179-185. · Zbl 1431.62153 · doi:10.1016/j.jeconom.2009.01.001
[24] Durbin, J. and Koopman, S. (2002). “A simple and efficient simulation smoother for state space time series analysis.” Biometrika , 89: 603-615. · Zbl 1036.62071 · doi:10.1093/biomet/89.3.603
[25] Durbin, J. and Koopman, S. J. (2012). Time Series Analysis by State Space Methods . Oxford: Oxford University Press, 2nd edition. · Zbl 1270.62120
[26] Engle, R. and Manganelli, S. (2004). “CAViaR: Conditional autoregressive value at risk by regression quantiles.” Journal of Business & Economic Statistics , 22: 367-381.
[27] Fan, Y., Härdle, W., Wang, W., and Zhu, L. (2013). “Composite quantile regression for the single-index model.” Sonderforschungsbereich 649: Ökonomisches Risiko 10 , (SFB 649Papers).
[28] Frühwirth-Schnatter, S. (1994). “Data augmentation and dynamic linear models.” Journal of Time Series Analysis , 15: 183-202. · Zbl 0866.62018 · doi:10.1093/biomet/83.3.589
[29] Gelfand, A. and Smith, F. (1990). “Sampling-based approaches to calculating marginal densities.” Journal of the American Statistical Association , 85: 398-409. · Zbl 0702.62020 · doi:10.2307/2289776
[30] Geman, S. and Geman, D. (1984). “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.” IEEE Transactions on Pattern Analysis and Machine Intelligence , 6: 721-741. · Zbl 0573.62030 · doi:10.1109/TPAMI.1984.4767596
[31] Gerlach, R., Chen, C., and Chan, N. (2011). “Bayesian time-varying quantile forecasting for Value-at-Risk in financial markets.” Journal of Business & Economic Statistics , 29: 481-492.
[32] Geweke, J. (1992). “Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments.” In Bernardo, J. M., Berger, J., Dawid, A. P., and Smith, A. F. M. (eds.), Bayesian Statistics , 169-193. Oxford University Press, 4th edition.
[33] - (2005). Contemporary Bayesian Econometrics and Statistics . Hoboken: Wiley Series in Probability and Statistics, Wiley. · Zbl 1093.62107 · doi:10.1002/0471744735
[34] Girardi, G. and Ergün, A. (2013). “Systemic risk measurement: Multivariate GARCH estimation of CoVaR.” Journal of Banking & Finance , 37: 3169-3180.
[35] Gourieroux, C. and Jasiak, J. (2008). “Dynamic quantile models.” Journal of Econometrics , 147: 198-205. · Zbl 1429.62396 · doi:10.1016/j.jeconom.2008.09.028
[36] Harvey, A. (1989). Forecasting, structural time series models and the Kalman filter . Cambridge: Cambridge University Press. · Zbl 0725.62083
[37] Hautsch, N., Schaumburg, J., and Schienle, M. (2014). “Financial Network Systemic Risk Contributions.” Review of Finance .
[38] Huang, A. (2012). “Value at risk estimation by quantile regression and kernel estimator.” Review of Quantitative Finance and Accounting , 41: 225-251.
[39] Hyndman, R., King, M., Pitrun, I., and Billah, B. (2005). “Local linear forecasts using cubic smoothing splines.” Australian & New Zealand Journal of Statistics , 41: 87-99. · Zbl 1108.62096 · doi:10.1111/j.1467-842X.2005.00374.x
[40] Johannes, M. and Polson, N. (2009). “MCMC methods for Financial Econometrics.” In Ait-Sahalia, Y. and Hansen, L. (eds.), Handbook of Financial Econometrics , 1-72. North Holland. · Zbl 0815.62065 · doi:10.1111/j.1467-9892.1994.tb00184.x
[41] Jorion, P. (2007). Value-at-Risk: The new benchmark for managing financial risk . Chicago: McGraw-Hill.
[42] Koenker, B. (2005). Quantile Regression . Cambridge: Cambridge University Press. · Zbl 1111.62037
[43] Koenker, B. and Basset, G. (1978). “Regression Quantiles.” Econometrica , 46: 33-50. · Zbl 0373.62038 · doi:10.2307/1913643
[44] Koenker, B. and Xiao, Z. (2006). “Quantile autoregression.” Journal of the American Statistical Association , 101: 980-990. · Zbl 1120.62326 · doi:10.1198/016214506000000672
[45] Koopman, S. (1991). “Efficient smoothing algorithms for time series models.” Doctoral Thesis .
[46] Koopman, S., Shephard, N., and Doornik, J. (1998). “Statistical algorithms for models in state space using Ssf Pack 2.2.” Econometrics Journal , 1: 1-55.
[47] Kottas, A. and Gelfand, A. (2001). “Bayesian semiparametric median regression modeling.” Journal of the American Statistical Association , 96: 1458-1468. · Zbl 1051.62038 · doi:10.1198/016214501753382363
[48] Kottas, A. and Krnjajic, M. (2009). “Bayesian semiparametric modelling in quantile regression.” Scandinavian Journal of Statistics , 36: 297-319. · Zbl 1190.62053 · doi:10.1111/j.1467-9469.2008.00626.x
[49] Kotz, S., Kozubowski, T., and Podgórski, K. (2001). The Laplace distribution and generalizations. A revisit with Applications to Communications, Economics, Engineering, and Finance . Birkhäuser. · Zbl 0977.62003
[50] Kozumi, H. and Kobayashi, G. (2011). “Gibbs Sampling Methods for Bayesian Quantile Regression.” Journal of Statistical Computation and Simulation , 81: 1565-1578. · Zbl 1431.62018 · doi:10.1080/00949655.2010.496117
[51] Kuester, K., Mittnik, S., and Paolella, M. (2006). “Value-at-Risk Prediction: A Comparison of Alternative Strategies.” Journal of Financial Econometrics , 4: 53- 89.
[52] Kupiec, P. (1995). “Techniques for verifying the accuracy of risk measurement models.” Journal of Derivatives , 3: 73-84.
[53] Kurose, Y. and Omori, Y. (2012). “Bayesian analysis of time-varying quantiles using a smoothing spline.” Journal of the Japan Statistical Society , 42: 23-46. · Zbl 06153008 · doi:10.14490/jjss.42.23
[54] Lee, C. and Su, J. (2012). “Alternative statistical distributions for estimating value-at-risk: theory and evidence.” Review of Quantitative Finance and Accounting , 39: 309-331.
[55] Lin, N. and Chang, C. (2012). “Comment on Article by K. Lum and A.E. Gelfand, “Spatial Quantile Multiple Regression Using the Asymmetric Laplace Process”.” Bayesian Analysis , 7: 263-270. · Zbl 1330.62196 · doi:10.1214/12-BA708B
[56] Liu, J. (1994). “The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem.” Journal of the American Statistical Association , 89: 958-966. · Zbl 0804.62033 · doi:10.2307/2290921
[57] Lum, K. and Gelfand, A. (2012). “Spatial Quantile Multiple Regression Using the Asymmetric Laplace Process.” Bayesian Analysis , 7: 235-258. · Zbl 1330.62197 · doi:10.1214/12-BA708
[58] McNeil, A., Frey, R., and Embrechts, P. (2005). Quantitative risk management: Concepts, Techniques, Tools . Princeton: Princeton Series in Finance. · Zbl 1089.91037
[59] Park, T. and Casella, G. (2008). “The Bayesian Lasso.” Journal of the American Statistical Association , 103: 681-686. · Zbl 1330.62292 · doi:10.1198/016214508000000337
[60] Park, T. and Van Dyk, D. (2009). “Partially Collapsed Gibbs Samplers: Illustrations and Applications.” Journal of Computational and Graphical Statistics , 18: 283-305. · doi:10.1198/jcgs.2009.08108
[61] Schaumburg, J. (2010). “Predicting extreme VaR: nonparametric quantile regression with refinements from extreme value theory.” Sonderforschungsbereich 649: Ökonomisches Risiko 9 , (SFB 649Papers). · Zbl 1254.91279 · doi:10.1016/j.csda.2012.03.016
[62] Sriram, K., Ramamoorthi, R., and Ghosh, P. (2013). “Posterior consistency of Bayesian quantile regression based on the misspecified Asymmetric Laplace density.” Bayesian Analysis , 8: 479-504. · Zbl 1329.62308 · doi:10.1214/13-BA817
[63] Tanner, M. and Wong, W. (1987). “The calculation of posterior distributions by data augmentation.” Journal of the American Statistical Association , 82: 528-550. · Zbl 0619.62029 · doi:10.2307/2289457
[64] Taylor, J. (2008). “Simultaneous linear quantile regression: a semiparametric Bayesian approach.” Bayesian Analysis , 7: 51-72. · Zbl 1330.62193 · doi:10.1214/12-BA702
[65] Tokdar, S. and Kadane, J. (2012). “Using exponentially weighted quantile regression to estimate value at risk and expected shortfall.” Journal of Financial Econometrics , 6: 382-406.
[66] Van Dyk, D. and Park, T. (2008). “Partially collapsed Gibbs samplers: Theory and Methods.” Journal of the American Statistical Association , 110: 790-796. · Zbl 1471.62198 · doi:10.1198/016214508000000409
[67] Yu, K. and Moyeed, R. (2001). “Bayesian quantile regression.” Statistics & Probability Letters , 54: 437-447. · Zbl 0983.62017 · doi:10.1016/S0167-7152(01)00124-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.