×

Compact Tits quadrangles as Lie geometries of topological Laguerre spaces. (English) Zbl 1135.51012

The authors develop a theory of topological Laguerre and Lie geometries of higher rank and show that the Lie geometry associated with a locally compact connected Laguerre space is a compact connected generalized quadrangle. If the geometric dimension of the Laguerre space is at least three, the corresponding generalized quadrangle is of Tits type. Conversely, every compact connected generalized quadrangle of Tits type arises from a Laguerre space. Geometrically, this is not surprising since every Laguerre space of rank at least three is ovoidal. The main part of the paper consists in showing that the corresponding topologies are well behaved.
The rank two case has already been handled by A. E. Schroth [“Topological circle planes and topological quadrangles”, Harlow Essex: Longman (1995; Zbl 0839.51013)].

MSC:

51H15 Topological nonlinear incidence structures
51H10 Topological linear incidence structures
51E12 Generalized quadrangles and generalized polygons in finite geometry
51B15 Laguerre geometries
51B25 Lie geometries in nonlinear incidence geometry

Citations:

Zbl 0839.51013
Full Text: DOI

References:

[1] Benz W., Deutsch. Math.-Verein. 67 pp 14– (1964)
[2] DOI: 10.1007/BF00181558 · Zbl 0453.51007 · doi:10.1007/BF00181558
[3] DOI: 10.1007/BF02993130 · Zbl 0165.23603 · doi:10.1007/BF02993130
[4] DOI: 10.1007/BF02992884 · Zbl 0187.42302 · doi:10.1007/BF02992884
[5] DOI: 10.1016/0097-3165(86)90010-5 · Zbl 0596.51008 · doi:10.1016/0097-3165(86)90010-5
[6] DOI: 10.1016/0166-8641(90)90076-E · Zbl 0692.51008 · doi:10.1016/0166-8641(90)90076-E
[7] Joswig M., Results Math. 38 pp 72– (2000)
[8] DOI: 10.1007/BF01919752 · Zbl 0436.51006 · doi:10.1007/BF01919752
[9] DOI: 10.1007/BF02941614 · Zbl 0784.51012 · doi:10.1007/BF02941614
[10] DOI: 10.1023/A:1005264830699 · Zbl 0977.51006 · doi:10.1023/A:1005264830699
[11] DOI: 10.1007/BF01112655 · Zbl 0152.19006 · doi:10.1007/BF01112655
[12] DOI: 10.1007/BF01114995 · Zbl 0156.40804 · doi:10.1007/BF01114995
[13] DOI: 10.1007/BF02992889 · Zbl 0188.52703 · doi:10.1007/BF02992889
[14] Mäurer H., J. Reine Angew. Math. 253 pp 203– (1972)
[15] DOI: 10.1007/BF02993131 · Zbl 0164.20804 · doi:10.1007/BF02993131
[16] DOI: 10.1515/advg.2005.5.4.559 · Zbl 1088.51007 · doi:10.1515/advg.2005.5.4.559
[17] Rosehr N., Innovations in Incidence Geometry 1 pp 143– (2005)
[18] Schröder E. M., Band 2. Bibliographisches Institut, Mannheim pp 51001b– (1991)
[19] DOI: 10.1007/BF00150801 · Zbl 0717.51007 · doi:10.1007/BF00150801
[20] DOI: 10.1007/BF01263624 · Zbl 0788.51003 · doi:10.1007/BF01263624
[21] Schroth A. E., Results Math. 24 pp 180– (1993)
[22] Schroth A. E., MR138 pp 51010– (1901)
[23] Skornyakov L. A., Trudy Moskov. Mat. Obšč. 3 pp 347– (1954)
[24] DOI: 10.1007/BF01111408 · Zbl 0181.23303 · doi:10.1007/BF01111408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.