×

Topological projective spaces. (English) Zbl 0784.51012

While it is easy to “see” the topology on the point set of the real affine plane, this is not so for the line set. The same phenomenon occurs for topological projective planes and spaces.
The authors succeed in improving this situation for the projective \(n\)- space \(\mathbb{P}_ n(K)=:\mathbb{P}\) over a topological skew-field \(K\): The vector space \(V= K^{n+1}\) is endowed with the product topology, and subsequently the set \(V^ k\). Its subset \(E_ k\) of independent \(k\)- tuples of vectors inherits the subspace topology. Denote by \(\sigma_ k:E_ k \to_ k \mathbb{P}:=\) set of \(k\)-dimensional subspaces, the map assigning to an independent \(k\)-tuple the subspace generated by its vectors. Now \(_ k\mathbb{P}\) is endowed with the quotient topology with respect to \(\sigma\), and \(\mathbb{P}\) with the sum topology (free union) of the \(_ k\mathbb{P}\). The authors give a short proof that then \(\mathbb{P}\) is a topological projective space and its topology coincides with the one constructed inductively in the pioneering paper of J. Misfeld [Abh. Math. Semin. Univ. Hamb. 32, 232-263 (1968; Zbl 0164.208)].
In addition to this theorem (2.10) they show: \(\mathbb{P}\) satisfies the separation axiom \(T_ 3\). Discreteness, second countability and local compactness are hereditary properties, i.e. satisfied either by all or by none of the spaces \(K\), \(_ 0\mathbb{P}\), \(_ 1\mathbb{P},\ldots,_{n-1}\mathbb{P}\). They also give a short proof for a result by C. Zanella [Abh. Math. Semin. Univ. Hamb. 59, 125-142 (1989; Zbl 0715.51006)]: If \(K\) is locally compact and not discrete, then \(\mathbb{P}\) is compact and has a countable basis.

MSC:

51H10 Topological linear incidence structures
Full Text: DOI

References:

[1] Doignon, J.-P., Sur les espaces projectifs topologiques, Math. Z., 122, 57-60 (1971) · Zbl 0212.52301 · doi:10.1007/BF01113564
[2] Groh, H., Geometric Lattices with Topology, J. Combin. Theory A, 42, 111-125 (1986) · Zbl 0596.51008 · doi:10.1016/0097-3165(86)90010-5
[3] Kolmogorov, A. N., Zur Begründung der projektiven Geometrie, Ann. Math., 33, 175-176 (1932) · JFM 58.0600.01 · doi:10.2307/1968111
[4] R. Kühne, Die Topologie projektiver Räume über lokal kompakten Körpern, Diplomarbeit Braunschweig 1990.
[5] H. Lenz, Vorlesungen über projektive Geometrie, Leipzig 1965. · Zbl 0134.16203
[6] Löwen, R., Compact Spreads and Compact Translation Planes over Locally Compact Fields, J. Geom., 36, 110-116 (1989) · Zbl 0694.51011 · doi:10.1007/BF01231026
[7] Misfeld, J., Topologische projektive Räume, Abh. Math. Sem. Univ. Hamburg, 32, 232-262 (1968) · Zbl 0164.20804
[8] L.S. Pontrjagin, Topologische Gruppen (Teil 1), Leipzig 1957. · Zbl 0085.01704
[9] Sörensen, K., Zum Begriff des topologischen projektiven Raumes, Math. Z., 109, 239-245 (1969) · Zbl 0181.23303 · doi:10.1007/BF01111408
[10] Szambien, H., Toplogical Projective Geometries, J. Geom., 26, 163-171 (1986) · Zbl 0598.51013 · doi:10.1007/BF01227839
[11] Zanella, C., On Topological Projective Spaces and Their Grassmannians, Abh. Math. Sem. Univ. Hamburg, 59, 125-142 (1989) · Zbl 0715.51006 · doi:10.1007/BF02942324
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.