×

(Super-)integrable systems associated to 2-dimensional projective connections with one projective symmetry. (English) Zbl 1427.53018

Summary: Projective connections arise from equivalence classes of affine connections under the reparametrization of geodesics. They may also be viewed as quotient systems of the classical geodesic equation. After studying the link between integrals of the (classical) geodesic flow and its associated projective connection, we turn our attention to 2-dimensional metrics that admit one projective vector field, i.e. whose local flow sends unparametrized geodesics into unparametrized geodesics. We review and discuss the classification of these metrics, introducing special coordinates on the linear space of solutions to a certain system of partial differential equations, from which such metrics are obtained. Particularly, we discuss those that give rise to free second-order superintegrable Hamiltonian systems, i.e. which admit 2 additional, functionally independent quadratic integrals. We prove that these systems are parametrized by the 2-sphere, except for 6 exceptional points where the projective symmetry becomes homothetic.

MSC:

53B10 Projective connections
53B50 Applications of local differential geometry to the sciences
53D25 Geodesic flows in symplectic geometry and contact geometry

References:

[1] Aminova, A. V.; Aminov, N. A.-M., Projective geometry of systems of second-order differential equations, Mat. Sb., 197, 7, 3-28 (2006) · Zbl 1143.53310
[2] Beltrami, E., Risoluzione del problema: riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentante da linee rette, Ann. Mat., 1, 7, 185-204 (1865)
[3] Benenti, S., Inertia tensors and Stäckel systems in Euclidean spaces, Rendiconti del Seminario Matematico, 50 (1992) · Zbl 0796.53017
[4] Benenti, S., Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems, Acta Appl. Math., 87, 1-3, 33-91 (2005) · Zbl 1081.53036
[5] Benenti, S., Algebraic construction of the quadratic first integrals for a special class of orthogonal separable systems, (Eastwood, Michael; Miller, Willard, Symmetries and Overdetermined Systems of Partial Differential Equations (2008), Springer New York: Springer New York New York, NY), 277-304 · Zbl 1138.37045
[6] Bocharov, A. V.; Chetverikov, V. N.; Duzhin, S. V.; Khor’kova, N. G.; Krasil’shchik, I. S.; Samokhin, A. V.; Torkhov, Yu. N.; Verbovetsky, A. M.; Vinogradov, A. M., (Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Translations of Mathematical Monographs, vol. 182 (1999), American Mathematical Society, Providence, RI), xiv+333, (Edited and with a preface by Krasil’shchik and Vinogradov, Translated from the 1997 Russian original by Verbovetsky [A. M. Verbovetskiĭ] and Krasil’shchik) · Zbl 0911.00032
[7] Bolsinov, A. V.; Matveev, V. S., Geometrical interpretation of benenti systems, J. Geom. Phys., 44, 4, 489-506 (2003) · Zbl 1010.37035
[8] Bolsinov, A. V.; Matveev, V. S., Splitting and gluing constructions for geodesically equivalent pseudo-Riemannian metrics, Trans. Amer. Math. Soc., 363, 4081-4107 (2011), [math.DG] · Zbl 1220.53020
[9] Bolsinov, A. V.; Matveev, V. S.; Pucacco, G., Normal forms for pseudo-Riemannian 2-dimensional metrics whose geodesic flows admit integrals quadratic in momenta, J. Geom. Phys., 59, 7, 1048-1062 (2009) · Zbl 1169.53054
[10] Bryant, R.; Dunajski, M.; Eastwood, M., Metrisability of two-dimensional projective structures, J. Differential Geom., 83, 3, 465-500 (2009) · Zbl 1196.53014
[11] Bryant, R. L.; Manno, G.; Matveev, V. S., A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields, Math. Ann., 340, 2, 437-463 (2008) · Zbl 1144.53025
[12] Capel, J. J.; Kress, J. M., Invariant classification of second-order conformally flat superintegrable systems, J. Phys. A, 47, 495202 (2014) · Zbl 1314.14064
[13] Cartan, E., Sur les variétés à connexion projective, Bull. Soc. Math. Fr., 52, 205-241 (1924) · JFM 50.0500.02
[14] F. Contatto, Vortices, Painlevé integrability and projective geometry (Ph.d. thesis).; F. Contatto, Vortices, Painlevé integrability and projective geometry (Ph.d. thesis).
[15] Contatto, F.; Dunajski, M., Metrisability of Painlevé equations (2016), ArXiv e-prints, [math.DG] · Zbl 1434.34077
[16] Crampin, M.; Sarlet, W.; Thompson, G., Bi-differential calculi and bi-Hamiltonian systems, J. Phys. A: Math. Gen., 33, 20, L177 (2000) · Zbl 0989.37063
[17] Dini, U., Sopra un problema che si presenta nella teoria generale delle rappresentazioni geografiche di una superficie su di un’altra, Ann. Mat. Pura Appl. (1867-1897), 3, 1, 269-293 (1869) · JFM 02.0622.02
[18] Eastwood, M.; Matveev, V., Metric connections in projective differential geometry, (Eastwood, Michael; Miller, Willard, Symmetries and Overdetermined Systems of Partial Differential Equations (2008), Springer New York: Springer New York New York, NY), 339-350 · Zbl 1144.53027
[19] Fedorova, A.; Matveev, V. S., Degree of mobility for metrics of lorentzian signature and parallel (0,2)-tensor fields on cone manifolds, Proc. Lond. Math. Soc., 108, 5, 1277-1312 (2014) · Zbl 1310.53020
[20] Fels, M. E., The equivalence problem for systems of second-order ordinary differential equations, Proc. Lond. Math. Soc. (3), 71, 1, 221-240 (1995) · Zbl 0833.58031
[21] Gover, A. R.; Matveev, V. S., Projectively related metrics, Weyl nullity and metric projectively invariant equations, Proc. Lond. Math. Soc., 114, 2, 242-292 (2017) · Zbl 1388.58005
[22] Hiramatu, H., RiemannIan manifolds admitting a projective vector field, Kodai Math. J., 3, 3, 397-406 (1980) · Zbl 0454.53029
[23] Ibort, A.; Magri, F.; Marmo, G., Bihamiltonian structures and Stäckel separability, J. Geom. Phys., 33, 3, 210-228 (2000) · Zbl 0952.37028
[24] Joachimsthal, F., Ueber die Bedingung der Integrabilität, J. Reine Angew. Math., 33, 95-116 (1846) · ERAM 033.0938cj
[25] Kalnins, E. G.; Kress, J. M.; Miller, W., Separation of Variables and Superintegrability, 2053-2563 (2018), IOP Publishing · Zbl 1416.35002
[26] Kalnins, E. G.; Kress, J. M.; Miller Jr., W., Second order superintegrable systems in conformally flat spaces. III. Three-dimensional classical structure theory, J. Math. Phys., 46, 103507 (2005) · Zbl 1111.37055
[27] Kalnins, E. G.; Kress, J. M.; Pogosyan, G. S.; Miller Jr., W., Completeness of multiseparable superintegrability in two-dimensional constant curvature spaces, J. Phys. A: Math. Gen., 34, 4705-4720 (2001) · Zbl 0993.70014
[28] Kress, J.; Schöbel, K., An algebraic geometric classification of superintegrable systems in the Euclidean plane, J. Pure Appl. Algebra (2018)
[29] Levi-Civita, T., Sulle trasformazioni delle equazioni dinamiche, Ann. Mat. Pura Appl., 24, 2 (1896), (in Italian, republished in: Opere, v. 1, p. 207-252) · JFM 27.0603.04
[30] Lie, S., Untersuchungen über geodätische Curven, Math. Ann., 20 (1882)
[31] Liouville, R., Sur les invariants de certaines équations différentielles et sur leurs applications, J. École Polytech., 59, 7-76 (1889) · JFM 21.0317.02
[32] Manno, G., On the geometry of Grassmannian equivalent connections, Adv. Geom., 8, 3, 329-342 (2008) · Zbl 1155.53010
[33] Manno, G.; Pavlov, M. V., Hydrodynamic-type systems describing 2-dimensional polynomially integrable geodesic flows, J. Geom. Phys., 113, 197-205 (2017), (Nonlinear partial differential equations: integrability, geometry and related topics) · Zbl 1358.53088
[34] Manno, G.; Vollmer, A., Normal forms of two-dimensional metrics admitting exactly one essential projective vector field (2017), ArXiv e-prints, [math.DG]
[35] Manno, G.; Vollmer, A., Benenti tensors: A useful tool in projective differential geometry, Complex Manifolds, 5, 1, 111-121 (2018) · Zbl 1397.53027
[36] Marquette, I.; Winternitz, P., Superintegrable systems with third-order integrals of motion, J. Phys. A, 41, 30, 304031 (2008) · Zbl 1192.81189
[37] Matveev, V. S., Geodesically equivalent metrics in general relativity, J. Geom. Phys., 62, 3, 675-691 (2012), (Recent developments in mathematical relativity) · Zbl 1248.83018
[38] Matveev, V. S., Two-dimensional metrics admitting precisely one projective vector field, Math. Ann., 352, 4, 865-909 (2012) · Zbl 1237.53013
[39] Matveev, V. S.; Mounoud, P., Gallot-Tanno theorem for closed incomplete pseudo-Riemannian manifolds and applications, Ann. Global Anal. Geom., 38, 3, 259-271 (2010) · Zbl 1204.53057
[40] Matveev, V. S.; Shevchishin, V. V., Two-dimensional superintegrable metrics with one linear and one cubic integral, J. Geom. Phys., 61, 1353-1377 (2011), arXiv:1010.4699 [math-ph] · Zbl 1218.53087
[41] O’Connor, J. E. R.; Prince, G. E., Finding collineations of kimura metrics, Gen. Relativity Gravitation, 30, 1, 69-82 (1998) · Zbl 0911.53056
[42] Olver, P. J., Applications of Lie groups to differential equations, (Graduate Texts in Mathematics, vol. 107 (1993), Springer-Verlag: Springer-Verlag New York), xxviii+513 · Zbl 0785.58003
[43] Painlevé, P., Mémoire sur la transformation des équations de la Dynamique, J. Math. Appl., 10, 4, 5-92 (1894) · JFM 25.1386.01
[44] Popper, I.; Post, S.; Winternitz, P., Third-order superintegrable systems separable in parabolic coordinates, J. Math. Phys., 53, 6, 062105 (2012), [math-ph] · Zbl 1277.70020
[45] Rañada, M. F., Superintegrable n=2 systems, quadratic constants of motion, and potentials of Drach, J. Math. Phys., 38, 8, 4165-4178 (1997) · Zbl 0883.58014
[46] Raabe, J. L., Ueber die Anzahl und die Form der Bedingungsgleichung, unter welchen eine gewöhnliche Differentialgleichung zwischen zwei Variabeln \(n\) ter Ordnung, und von der Form \(V = y_n \varphi(x, y, y_1, y_2, \ldots, y_{n - 1}) + \psi(x, y, y_1, y_2, \ldots, y_{n - 1}) = 0\) das unmittelbare Differentiations-Ergebniss einer nach der allgemeinen Constante aufgelöseten analogen Differentialgleichung \((n - 1)\) ter Ordnung ist, J. Reine Angew. Math., 31, 181-212 (1846) · ERAM 031.0886cj
[47] Schöbel, K., (An Algebraic Geometric Approach to Separation of Variables. An Algebraic Geometric Approach to Separation of Variables, Research Series (2015), Springer Spektrum) · Zbl 1338.35002
[48] Sharpe, R. W., (Differential Geometry. Differential Geometry, Graduate Texts in Mathematics, vol. 166 (1997), Springer-Verlag: Springer-Verlag New York), xx+421, (Cartan’s generalization of Klein’s Erlangen program, With a foreword by S.S. Chern) · Zbl 0876.53001
[49] Sinyukov, N. S., On the theory of a geodesic mapping of Riemannian spaces, Dokl. Akad. Nauk SSSR, 169, 4, 770-772 (1966) · Zbl 0148.42301
[50] Stäckel, P., Die Integration der Hamilton-Jacobischen Differentialgleichung mittelst Separation der Variablen (1891), Habilitationsschrift, Universität Halle: Habilitationsschrift, Universität Halle Halle, (Ph.D. thesis) · JFM 23.0402.02
[51] Thomas, T. Y., On the projective and equi-projective geometry of path, Proc. Nat. Acad. Sci., 11, 199-203 (1925) · JFM 51.0569.03
[52] Topalov, P.; Matveev, V. S., Geodesic equivalence via integrability, Geom. Dedicata, 96, 1, 91-115 (2003) · Zbl 1017.37029
[53] Tremblay, F.; Winternitz, P., Third-order superintegrable systems separating in polar coordinates, Journal of Physics A Mathematical General, 43, 17, 175206 (2010), [math-ph] · Zbl 1188.81108
[54] Tresse, A., Sur les invariants différentiels des groupes continus de transformations, Acta Math., 18, 1-88 (1894) · JFM 25.0641.01
[55] Tresse, A., Détermination Des Invariants Ponctuels de L’équation Différentielle Ordinaire Du Second Ordre \(Y^{\prime \prime} = \omega(X, Y, Y^\prime) (1896)\), Hirzel Leipzig · JFM 27.0254.01
[56] Valent, G.; Duval, C.; Shevchishin, V., Explicit metrics for a class of two-dimensional cubically superintegrable systems, J. Geom. Phys., 87, 461-481 (2015), [math-ph] · Zbl 1310.37025
[57] Veblen, O., Projective and affine geometry of paths, Nat. Acad. Proc., 8, 347-350 (1922) · JFM 48.0843.04
[58] Vollmer, A., Projectively related superintegrable systems (2018), ArXiv e-prints, [math.DG]
[59] Weyl, H., Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung, Göttingen Nachr., 99-122 (1921) · JFM 48.0844.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.