×

A vanishing-inertia analysis for finite-dimensional rate-independent systems with nonautonomous dissipation and an application to soft crawlers. (English) Zbl 1471.74035

Summary: We study the approximation of finite-dimensional rate-independent quasistatic systems, via a vanishing-inertia asymptotic analysis of dynamic evolutions. We prove the uniform convergence of dynamic solutions to a rate-independent one, employing the variational concept of energetic solution. Motivated by applications in soft locomotion, we allow time-dependence of the dissipation potential, and translation invariance of the potential energy.

MSC:

74H99 Dynamical problems in solid mechanics
74L15 Biomechanical solid mechanics
74P99 Optimization problems in solid mechanics
74S99 Numerical and other methods in solid mechanics
68T05 Learning and adaptive systems in artificial intelligence
92C10 Biomechanics
70E60 Robot dynamics and control of rigid bodies

References:

[1] Accoto, D.; Castrataro, P.; Dario, P., Biomechanical analysis of oligochaeta crawling, J. Theor. Biol., 230, 49-55 (2004) · Zbl 1447.92022 · doi:10.1016/j.jtbi.2004.03.025
[2] Adly, S., Le, B.K.: Unbounded second-order state-dependent Moreau’s sweeping processes in Hilbert spaces. J. Optim. Theory Appl. 169, 407-423 (2016) · Zbl 1345.34116
[3] Agostiniani, V., Second order approximations of quasistatic evolution problems in finite dimension, Disc. Contin. Dyn. Syst., 32, 1125-1167 (2012) · Zbl 1451.34091 · doi:10.3934/dcds.2012.32.1125
[4] Agostiniani, V.; Rossi, R., Singular vanishing-viscosity limits of gradient flows: the finite-dimensional case, J. Differ. Equ., 263, 7815-7855 (2017) · Zbl 1458.35026 · doi:10.1016/j.jde.2017.08.027
[5] Alexander, R.M.: Principles of Animal Locomotion. Princeton University Press (2003)
[6] Ambrosio, L.; Gigli, N.; Savaré, G., Gradient Flows in Metric Spaces and in the Space of Probability Measures (2005), Basel-Boston-Berlin: Birkhäuser Verlag, Basel-Boston-Berlin · Zbl 1090.35002
[7] Arroud, ChE; Colombo, G., A maximum principle for the controlled sweeping process, Set-Valued Var. Anal., 26, 607-629 (2018) · Zbl 1398.49015 · doi:10.1007/s11228-017-0400-4
[8] Artina, M.; Cagnetti, F.; Fornasier, M.; Solombrino, F., Linearly constrained evolutions of critical points and an application to cohesive fractures, Math. Models Methods Appl. Sci., 27, 231-290 (2017) · Zbl 1358.74053 · doi:10.1142/S0218202517500014
[9] Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer (2012) · Zbl 0538.34007
[10] Bastien, J., Bernardin, F., Lamarque, C.-H.: Non Smooth Deterministic or Stochastic Discrete Dynamical Systems: Applications to Models with Friction or Impact. Wiley (2013) · Zbl 1280.70001
[11] Bastien, J.; Schatzman, M.; Lamarque, C-H, Study of some rheological models with a finite number of degrees of freedom, Eur. J. Mech. A Solids, 19, 277-307 (2000) · Zbl 0954.74011 · doi:10.1016/S0997-7538(00)00163-7
[12] Behn, C.; Schale, F.; Zeidis, I.; Zimmermann, K.; Bolotnik, N., Dynamics and motion control of a chain of particles on a rough surface, Mech. Syst. Sig. Process., 89, 3-13 (2017) · doi:10.1016/j.ymssp.2016.11.001
[13] Berthé, RA; Westhoff, G.; Bleckmann, H.; Gorb, SN, Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae), J. Comp. Physiol. A, 195, 311-318 (2009) · doi:10.1007/s00359-008-0408-1
[14] Brezis, H.: Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Company Amsterdam (1973) · Zbl 0252.47055
[15] Brogliato, B.; Tanwani, A., Dynamical systems coupled with monotone set-valued operators: formalisms, applications, well-posedness, and stability, SIAM Rev., 62, 3-129 (2020) · Zbl 1450.34002 · doi:10.1137/18M1234795
[16] Brokate, M.; Krejčí, P., Optimal control of ODE systems involving a rate independent variational inequality, Disc. Cont. Dyn. Syst. Ser. B, 18, 331-348 (2013) · Zbl 1260.49002
[17] Calisti, M.; Picardi, G.; Laschi, C., Fundamentals of soft robot locomotion, J. Roy. Soc. Interf., 14, 20170101 (2017) · doi:10.1098/rsif.2017.0101
[18] Cicconofri, G.; DeSimone, A., A study of snake-like locomotion through the analysis of a flexible robot model, Proc. Roy. Soc. A Math. Phys. Eng. Sci., 471, 20150054 (2015) · Zbl 1371.70027
[19] Colombo, G.; Gidoni, P., On the optimal control of rate-independent soft crawlers, J. Mathématiques Pures et Appliquées, 146, 127-157 (2021) · Zbl 1456.49007 · doi:10.1016/j.matpur.2020.11.005
[20] Colombo, G., Gidoni, P., Vilches, E.: Stabilization of periodic sweeping processes and asymptotic average velocity for soft locomotors with dry friction. Disc. Contin. Dyn. Syst. (in press) · Zbl 1513.70074
[21] Crismale, V., Globally stable quasistatic evolution for a coupled elastoplastic-damage model, ESAIM Control Optim. Calc. Var., 22, 883-912 (2016) · Zbl 1342.74026 · doi:10.1051/cocv/2015037
[22] Dal Maso, G.; Scala, R., Quasistatic evolution in perfect plasticity as limit of dynamic processes, J. Dyn. Differ. Equ., 26, 915-954 (2014) · Zbl 1309.74017 · doi:10.1007/s10884-014-9409-7
[23] DeSimone, A.; Guarnieri, F.; Noselli, G.; Tatone, A., Crawlers in viscous environments: linear vs non-linear rheology, Int. J. Non-Linear Mech., 56, 142-147 (2013) · doi:10.1016/j.ijnonlinmec.2013.02.007
[24] Efendiev, MA; Mielke, A., On the rate-independent limit of systems with dry friction and small viscosity, J. Conv. Anal., 13, 151-167 (2006) · Zbl 1109.74040
[25] Francfort, G.; Mielke, A., Existence results for a class of rate-independent material models with nonconvex elastic energies, J. Reine Angew. Math., 595, 55-91 (2006) · Zbl 1101.74015
[26] Gamus, B.; Salem, L.; Gat, AD; Or, Y., Understanding inchworm crawling for soft-robotics, IEEE Robotics Autom. Lett., 5, 1397-1404 (2020) · doi:10.1109/LRA.2020.2966407
[27] Gidoni, P., Rate-independent soft crawlers, Quart. J. Mech. Appl. Math., 71, 369-409 (2018) · Zbl 1451.74169
[28] Gidoni, P.; DeSimone, A., On the genesis of directional friction through bristle-like mediating elements, ESAIM Control Optim. Calc. Var., 23, 1023-1046 (2017) · Zbl 1365.74021 · doi:10.1051/cocv/2017030
[29] Heida, M.; Mielke, A., Averaging of time-periodic dissipation potentials in rate-independent processes, Disc. Contin. Dyn. Syst. Ser. S, 10, 6, 1303-1327 (2017) · Zbl 1426.34075
[30] Hu, DL; Nirody, J.; Scott, T.; Shelley, MJ, The mechanics of slithering locomotion, Proc. Natl. Acad. Sci. USA, 106, 10081-10085 (2009) · doi:10.1073/pnas.0812533106
[31] Jung, K.; Koo, JC; Nam, J.; Lee, YK; Choi, HR, Artificial annelid robot driven by soft actuators, Bioinsp, Biomim., 2, S42-S49 (2007) · doi:10.1088/1748-3182/2/2/S05
[32] Kim, S.; Laschi, C.; Trimmer, B., Soft robotics: a bioinspired evolution in robotics, Trends Biotechnol., 31, 287-294 (2013) · doi:10.1016/j.tibtech.2013.03.002
[33] Krejcí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gattötoscho (1996) · Zbl 1187.35003
[34] Krejcí, P., Monteiro, G.A.: What is the Best Viscous Approximation to a Rate-Independent Process? J. Convex Anal. 27, (2020) · Zbl 1446.49008
[35] Kunze, M., Monteiro Marques, M.D.P.: An introduction to Moreau’s sweeping process. Impacts Mech. Syst. 551, 1-60 (1999) · Zbl 1047.34012
[36] Lazzaroni, G.; Nardini, L., On the quasistatic limit of dynamic evolutions for a peeling test in dimension one, J. Nonlinear Sci., 28, 269-304 (2018) · Zbl 1516.35556 · doi:10.1007/s00332-017-9407-0
[37] Lazzaroni, G.; Rossi, R.; Thomas, M.; Toader, R., Rate-independent damage in thermoviscoelastic materials with inertia, J. Dynam. Differ. Equ., 30, 1311-1364 (2018) · Zbl 1412.35325 · doi:10.1007/s10884-018-9666-y
[38] Manoonpong, P.; Petersen, D.; Kovalev, A.; Wörgötter, F.; Gorb, SN; Spinner, M.; Heepe, L., Enhanced locomotion efficiency of a bio-inspired walking robot using contact surfaces with frictional anisotropy, Sci. Rep., 6, 39455 (2016) · doi:10.1038/srep39455
[39] Manwell, T., Guo, B., Back, J., Liu, H.: Bioinspired setae for soft worm robot locomotion. In: 2018 IEEE International Conference on Soft Robotics (Robosoft), pp. 54-59 (2018)
[40] Martins, JAC; Monteiro Marques, MDP; Petrov, A., On the stability of quasi-static paths for finite dimensional elastic-plastic systems with hardening, ZAMM Z. Angew. Math. Mech., 87, 303-313 (2007) · Zbl 1116.74026 · doi:10.1002/zamm.200510315
[41] Marvi, H.; Bridges, J.; Hu, DL, Snakes mimic earthworms: propulsion using rectilinear travelling waves, J. Roy. Soc. Interf., 10, 20130188 (2013) · doi:10.1098/rsif.2013.0188
[42] Marvi, H., Meyers, G., Russell, G., Hu, D.L.: A snake-inspired robot with active control of friction. In: Proceedings of the ASME Dynamic Systems and Control Conference and BATH/ASME Symposium on Fluid Power and Motion Control, pp. 443-450 (2012)
[43] Menciassi, A.; Accoto, D.; Gorini, S.; Dario, P., Development of a biomimetic miniature robotic crawler, Auton. Robots, 21, 155-163 (2006) · doi:10.1007/s10514-006-7846-9
[44] Mielke, A.: Evolution of rate-independent systems, Evolutionary equations. In: Handbook of Differential Equations, vol. II, pp. 461-559. Elsevier/North-Holland, Amsterdam (2005) · Zbl 1120.47062
[45] Mielke, A.: Three examples concerning the interaction of dry friction and oscillations. In: Trends in Applications of Mathematics to Mechanics, pp. 159-177. Springer, Cham (2018) · Zbl 1407.49013
[46] Mielke, A.; Petrov, A.; Martins, JAC, Convergence of solutions of kinetic variational inequalities in the rate-independent quasistatic limit, J. Math. Anal. Appl., 348, 1012-1020 (2008) · Zbl 1147.49004 · doi:10.1016/j.jmaa.2008.07.077
[47] Mielke, A.; Rossi, R.; Savaré, G., Modeling solutions with jumps for rate-independent systems on metric spaces, Disc. Cont. Dyn. Syst., 25, 585-615 (2009) · Zbl 1170.49036 · doi:10.3934/dcds.2009.25.585
[48] Mielke, A.; Rossi, R.; Savaré, G., BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18, 36-80 (2012) · Zbl 1250.49041 · doi:10.1051/cocv/2010054
[49] Mielke, A.; Rossi, R.; Savaré, G., Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems, J. Eur. Math. Soc., 18, 2107-2165 (2016) · Zbl 1357.35007 · doi:10.4171/JEMS/639
[50] Mielke, A.; Roubíček, T., Rate-Independent Systems: Theory and Application (2015), New York: Springer-Verlag, New York · Zbl 1339.35006 · doi:10.1007/978-1-4939-2706-7
[51] Mielke, A.; Theil, F., On rate-independent hysteresis models, NoDEA Nonlinear Differ. Equ. Appl., 11, 151-189 (2004) · Zbl 1061.35182 · doi:10.1007/s00030-003-1052-7
[52] Mielke, A.; Thomas, M., Damage of nonlinearly elastic materials at small strain - Existence and regularity results -, Z. Angew. Math. Mech., 90, 88-112 (2010) · Zbl 1191.35159 · doi:10.1002/zamm.200900243
[53] Moreau, JJ, Bounded Variation in Time (1988), Birkhäuser, Basel: Topics in nonsmooth mechanics, Birkhäuser, Basel · Zbl 0657.28008
[54] Nardini, L., A note on the convergence of singularly perturbed second order potential-type equations, J. Dyn. Differ. Equ., 29, 783-797 (2017) · Zbl 1376.34055 · doi:10.1007/s10884-015-9461-y
[55] Negri, M., Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics, ESAIM Control Optim. Calc. Var., 20, 983-1008 (2014) · Zbl 1301.49017 · doi:10.1051/cocv/2014004
[56] Quillin, K., Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm lumbricus terrestris, J. Exp. Biol., 202, 661-674 (1999) · doi:10.1242/jeb.202.6.661
[57] Rafsanjani, A.; Zhang, Y.; Liu, B.; Rubinstein, SM; Bertoldi, K., Kirigami skins make a simple soft actuator crawl, Sci. Robotics, 3, eaar7555 (2018) · doi:10.1126/scirobotics.aar7555
[58] Riva, F., On the approximation of quasistatic evolutions for the debonding of a thin film via vanishing inertia and viscosity, J. Nonlinear Sci., 30, 903-951 (2020) · Zbl 1439.35314 · doi:10.1007/s00332-019-09595-8
[59] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer-Verlag, Berlin (1998) · Zbl 0888.49001
[60] Rossi, R., From visco to perfect plasticity in thermoviscoelastic materials, ZAMM Z. Angew. Math. Mech., 98, 1123-1189 (2018) · Zbl 07776892 · doi:10.1002/zamm.201700205
[61] Roubíček, T., Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity, SIAM J. Math. Anal., 45, 101-126 (2013) · Zbl 1264.35131 · doi:10.1137/12088286X
[62] Roubíček, T., Rate-independent processes in viscous solids at small strains, Math. Methods Appl. Sci., 32, 825-862 (2009) · Zbl 1239.35158 · doi:10.1002/mma.1069
[63] Scala, R., Limit of viscous dynamic processes in delamination as the viscosity and inertia vanish, ESAIM: Control Optim, Calc. Var., 23, 593-625 (2017) · Zbl 1397.35306
[64] Scilla, G.; Solombrino, F., A variational approach to the quasistatic limit of viscous dynamic evolutions in finite dimension, J. Differ. Equ., 267, 6216-6264 (2019) · Zbl 1432.34078 · doi:10.1016/j.jde.2019.06.018
[65] Sellers, WI; Manning, PL, Estimating dinosaur maximum running speeds using evolutionary robotics, Proc. Roy. Soc. B Biol. Sci., 274, 2711-2716 (2007)
[66] Seok, S.; Onal, CD; Cho, KJ; Wood, RJ; Rus, D.; Kim, S., Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators, IEEE/ASME Trans. Mechatr., 18, 1485-1497 (2013) · doi:10.1109/TMECH.2012.2204070
[67] Vaughan, C.L., O’Malley, M.J.: Froude and the contribution of naval architecture to our understanding of bipedal locomotion. Gait Post. 21, 350-362 (2005)
[68] Vikas, V.; Cohen, E.; Grassi, R.; Sözer, C.; Trimmer, B., Design and locomotion control of a soft robot using friction manipulation and motor-tendon actuation, IEEE Trans. Robot, 32, 949-959 (2016) · doi:10.1109/TRO.2016.2588888
[69] Wagner, GL; Lauga, E., Crawling scallop: friction-based locomotion with one degree of freedom, J. Theor. Biol., 324, 42-51 (2013) · Zbl 1314.92027 · doi:10.1016/j.jtbi.2013.01.021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.