×

Limit of viscous dynamic processes in delamination as the viscosity and inertia vanish. (English) Zbl 1397.35306

In this article the author considers the evolution of two visco-elastic bodies connected by a viscous adhesive. The evolution is governed by the classical equations of linear elasticity and a nonlinear equation describing the behaviour of the adhesive at the interface. The author proves the existence of a solution of those equations using a discretisation in time. Moreover, in case of a simple potential describing the energy stored by the adhesive, the author studies the limit of the solutions of the problem when time is rescaled by \(t/\varepsilon\) and \(\varepsilon\) tends to 0. It is shown that this limit still satisfies a balance of momentum and of energy. Finally, in the one-dimensional case, the author is able to show that the limit of the solutions satisfies a certain partial differential equation itself.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
35L04 Initial-boundary value problems for first-order hyperbolic equations
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
74R99 Fracture and damage
74B10 Linear elasticity with initial stresses
74B20 Nonlinear elasticity
Full Text: DOI

References:

[1] V. Agostiniani, Second Order Approximations of Quasistatic Evolution Problems in Finite Dimension. Discrete Cont. Dyn. Syst. A32 (2012) 1125-1167. · Zbl 1451.34091 · doi:10.3934/dcds.2012.32.1125
[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variations and Free Discontinuity Problems. Clarendon Press, Oxford (2000). · Zbl 0957.49001
[3] V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, 2nd edition. Reidel, Dordrecht (1986). · Zbl 0594.49001
[4] S. Bartels, A. Mielke and T. Roubicek, Quasistatic small-strain plasticity in the limit of vanishing hardening and its numerical approximation. SIAM J. Numer. Anal.50 (2012) 951-976. · Zbl 1248.35105 · doi:10.1137/100819205
[5] E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion. Math. Meth. Appl. Sci.31 (2008) 1029-1064. · Zbl 1145.35301 · doi:10.1002/mma.957
[6] H. Brezis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Hollande publishing company, Amsterdam (1972).
[7] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer (2010). · Zbl 1220.46002
[8] G. Dal Maso and R. Scala, Quasistatic Evolution in Perfect Plasticity as Limit of Dynamic Processes. J. Dyn. Differ. Eq.26 (2014) 915-954. · Zbl 1309.74017 · doi:10.1007/s10884-014-9409-7
[9] G. Dal Maso, P.G. Lefloch and F. Murat, Definition and Weak Stability of Nonconservative Products. J. Math. Pures Appl.74 (1995) 483-548. · Zbl 0853.35068
[10] G. Dal Maso, A. De Simone and M.G. Mora, Quasistatic Evolution Problems for Linearly Elastic-Perfectly Plastic Materials. Arch. Ration. Mech. Anal.180 (2006) 237-291. · Zbl 1093.74007 · doi:10.1007/s00205-005-0407-0
[11] G. Dal Maso, A. DeSimone, M.G. Mora and M. Morini, A Vanishing Viscosity Approach to Quasistatic Evolution in Plasticity with Softening. Arch. Ration. Mech. Anal.189 (2008) 469-544. · Zbl 1219.35305 · doi:10.1007/s00205-008-0117-5
[12] G. Dal Maso, A. De Simone and F. Solombrino, Quasistatic Evolution for Cam-Clay Plasticity: a Weak Formulation via Viscoplastic Regularization and Time Rescaling. Calc. Var. Partial Differ. Eq.40 (2011) 125-181. · Zbl 1311.74024 · doi:10.1007/s00526-010-0336-0
[13] N. Dunford and J.T. Schwartz, Linear Operators, Pure and Applied Mathematics series. New york (1976).
[14] M. Efendiev and A. Mielke, On the Rate-Independent Limit of Systems with Dry Friction and Small Viscosity. J. Convex Anal.13 (2006) 151-167. · Zbl 1109.74040
[15] M. Frémond, Equilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris295 (1982) 913-916. · Zbl 0551.73096
[16] M. Frémond, Adhrence des solides. J. Méc. Théor. Appl.6 (1987) 383-407. · Zbl 0645.73046
[17] D. Knees, A. Mielke and C. Zanini, On the Inviscid Limit of a Model for Crack Propagation. Math. Models Methods Appl. Sci.18 (2009) 1529-1569. · Zbl 1151.49014 · doi:10.1142/S0218202508003121
[18] D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. World Scientific23 (2013) 565-616. · Zbl 1262.74030 · doi:10.1142/S021820251250056X
[19] M. Kocvara, A. Mielke and T. Roubicek, A rate-independent approach to the delamination problem. Math. Mech. Solids11 (2006) 423-447. · Zbl 1133.74038 · doi:10.1177/1081286505046482
[20] G. Lazzaroni and R. Toader, A Model for Crack Propagation Based on Viscous Approximation. Math. Models Methods Appl. Sci.21 (2011) 2019-2047. · Zbl 1277.74066 · doi:10.1142/S0218202511005647
[21] G. Lazzaroni and R. Toader, Some Remarks on the Viscous Approximation of Crack Growth. Discrete Contin. Dyn. Syst. Ser. S6 (2013) 131-146. · Zbl 1263.74044 · doi:10.3934/dcdss.2013.6.131
[22] A. Mielke, Evolution of Rate-Independent Systems. In Evolutionary equations. Vol. II, edited by C.M. Dafermos and E. Feireisl. Handbook of Differential Equations. Elsevier/North-Holland, Amsterdam (2005) 461-559. · Zbl 1120.47062
[23] A. Mielke and L. Truskinovsky, From Discrete Visco-Elasticity to Continuum Rate-Independent Plasticity: Rigorous Results. Arch. Ration. Mech. Anal.203 (2012) 577-619. · Zbl 1286.74024 · doi:10.1007/s00205-011-0460-9
[24] A. Mielke, R. Rossi and G. Savaré, Modeling Solutions with Jumps for Rate-Independent Systems on Metric Spaces. Discrete Contin. Dyn. Syst.25 (2009) 585-615. · Zbl 1170.49036 · doi:10.3934/dcds.2009.25.585
[25] A. Mielke, R. Rossi and G. Savaré, BV Solutions and Viscosity Approximations of Rate-Independent Systems. ESAIM: COCV18 (2012) 36-80. · Zbl 1250.49041 · doi:10.1051/cocv/2010054
[26] M. Raous, L. Cangémi and M. Cocu, A consistent model coupling adhesion, friction, and unilateral contact. Comput. Methods Appl. Mech. Eng.177 (1999) 383-399. · Zbl 0949.74008 · doi:10.1016/S0045-7825(98)00389-2
[27] R. Rossi and T. Roubicek, Thermodynamics and analysis of rate-independent adhesive contact at small strains. Nonlin. Anal.74 (2011) 3159-3190. · Zbl 1217.35108 · doi:10.1016/j.na.2011.01.031
[28] R. Rossi and M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity. WIAS preprint 1692 (2012). · Zbl 1323.35101
[29] R. Rossi and T. Roubicek, Adhesive contact delaminating at mixed mode, its thermodynamics and analysis. Interfaces and Free Boundaries14 (2013) 1-37. · Zbl 1275.35131 · doi:10.4171/IFB/293
[30] T. Roubicek, Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J. Math. Anal.45 (2013) 101-126. · Zbl 1264.35131 · doi:10.1137/12088286X
[31] T. Roubicek, Maximally-dissipative local solutions to rate-independent systems and application to damage and delamination problems. Nonlin. Anal. Theory Meth. Appl.113 (2015) 33-50. · Zbl 1304.35377 · doi:10.1016/j.na.2014.09.020
[32] T. Roubicek, L. Scardia and C. Zanini, Quasistatic delamination problem. Cont. Mech. Thermodyn.21 (2009) 223-235. · Zbl 1179.74130 · doi:10.1007/s00161-009-0106-4
[33] T. Roubicek, C.G. Panagiotopoulos and V. Mantic, Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity. J. Appl. Math. Mech.93 (2013) 823-840.
[34] R. Toader and C. Zanini, An Artificial Viscosity Approach to Quasistatic Crack Growth. Boll. Unione Mat. Ital.9 (2009) 1-35. · Zbl 1180.35521
[35] A.I. Volpert and S.I. Hudjaev, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Nijhoff, Boston (1985).
[36] C. Zanini, Singular perturbations of finite dimensional gradient flows. Discrete Contin. Dyn. Syst. Ser. A18 (2007) 657-675. · Zbl 1154.34024 · doi:10.3934/dcds.2007.18.657
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.