×

Mathematical formulation of a dynamical system with dry friction subjected to external forces. (English) Zbl 1506.70024

Summary: We consider the response of a one-dimensional system with friction. S. W. Shaw [J. Sound Vib. 108, No. 2, 305–325 (1986; Zbl 1235.70105)] introduced the set up of different coefficients for the static and dynamic phases (also called stick and slip phases). He constructs a step by step solution, corresponding to an harmonic forcing. In this paper, we show that the theory of variational inequalities (V.I.) provides an elegant and synthetic approach to obtain the existence and uniqueness of the solution, avoiding the step by step construction. We then apply the theory to a real structure with real data and show that the model qualitatively agrees with the real data. In our case, the forcing motion comes from dilatation, due to temperature.

MSC:

70K40 Forced motions for nonlinear problems in mechanics
70F40 Problems involving a system of particles with friction
70-08 Computational methods for problems pertaining to mechanics of particles and systems

Citations:

Zbl 1235.70105

References:

[1] Den Hartog, J. P., Forced vibrations with combined Coulomb and viscous damping, Trans. Am. Soc. Mech. Eng., 53, 107-115 (1930) · JFM 56.1215.03
[2] Shaw, S. W., On the dynamic response of a system with dry friction, J. Sound Vib., 108, 2, 305-325 (1986) · Zbl 1235.70105
[3] Pierre, C.; Ferri, A.; Dowell, E., Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method, Trans. Am. Soc. Mech. Eng., 52, 4, 958-964 (1985) · Zbl 0584.73109
[4] Yeh, G. C.K., Forced vibrations of a two-degree-of-freedom system with combined Coulomb and viscous damping, J. Acoust. Soc. Am., 39, 14 (1966) · Zbl 0141.42002
[5] Lau, S. L.; Cheung, Y. K.; Wu, S. Y., A variable parameter incremental method for dynamic instability of linear and nonlinear elastic systems, ASME J. Appl. Mech., 49, 849-853 (1982) · Zbl 0503.73031
[6] Lau, S. L.; Cheung, Y. K.; Wu, S. Y., Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems, ASME J. Appl. Mech., 50, 871-876 (1983) · Zbl 0527.73052
[7] Popov, V. L., Contact Mechanics and Friction. Physical Principles and Applications (2010), Springer Berlin Heidelberg · Zbl 1193.74001
[8] https://ocw.mit.edu/courses/physics/8-01sc-classical-mechanics-fall-2016/week-2-newtons-laws/dd.1.1-friction-at-the-nanoscale/.
[9] Brézis, H., (Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert. (French) North-Holland Mathematics Studies. Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert. (French) North-Holland Mathematics Studies, Notas de Matemática (50) (1973), North-Holland Publishing Co. Amsterdam-London; American Elsevier Publishing Co. Inc.: North-Holland Publishing Co. Amsterdam-London; American Elsevier Publishing Co. Inc. New York), vi+183 · Zbl 0252.47055
[10] Lebon, Frédéric, Contact problems with friction: Models and simulations, (Simulation Modelling Practice and Theory, Vol. 11 (2003), Elsevier), 449-464
[11] Monteiro Marques, Manuel D. P., Differential Inclusions in Nonsmooth Mechanical Problems. Shocks and Dry Friction. Progress in Nonlinear Differential Equations and their Applications, Vol. 9, x+179 (1993), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0802.73003
[12] Bastien, J.; Schatzman, M., Indeterminacy of a dry friction problem with viscous damping involving stiction, ZAMM Z. Angew. Math. Mech., 88, 4, 243-255 (2008) · Zbl 1154.34006
[13] di Bernardo, M.; Budd, C. J.; Champneys, A. R.; Kowalczyk, P., Piecewise-Smooth Dynamical Systems. Theory and Applications. Applied Mathematical Sciences, Vol. 163, xxii+481 (2008), Springer-Verlag London, Ltd.: Springer-Verlag London, Ltd. London · Zbl 1146.37003
[14] Licskó, G.; Csernák, G., On the chaotic behaviour of a simple dry-friction oscillator, Math. Comput. Simulation, 95, 55-62 (2014) · Zbl 1533.70021
[15] Klarbring, A.; Ciavarella, M.; Barber, J. R., Shakedown in elastic contact problems with Coulomb friction, Int. J. Solids Struct., 44, 8355-8365 (2007) · Zbl 1167.74516
[16] Bastien, J., Convergence order of implicit Euler numerical scheme for maximal monotone differential inclusions, Z. Angew. Math. Phys., 64, 4, 955-966 (2013) · Zbl 1281.34109
[17] MATLAB Optimization Toolbox, The MathWorks, Natick, MA, USA. · Zbl 1002.65065
[18] Bastien, J.; Schatzman, M.; Lamarque, C., Study of some rheological models with a finite number of degrees of freedom, Eur. J. Mech./A Solids, 19, 2, 277-307 (2000) · Zbl 0954.74011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.