×

Some remarks on a paper by L. Carlitz. (English) Zbl 1115.33007

In this paper the author considers the following problem (which is a particular case of the problem by [I. M. Sheffer, “Some properties of polynomial sets of type zero.” Duke Math. J. 5, 590-622 (1939; Zbl 0022.01502)]: For which functions \(f(z)\), will the polynomials \(\Psi_n(x)\), generated by \[ exp[xf(z)]=\sum_{n=0}^\infty \Psi_n(x) \frac{z^n}{n!}, \] form an orthogonal set? For solving this problem he first shows that the solution requires the function \(f(z)\) to be of the \(\arctan\) type. He shows that the solution of the problem are polynomials that are not orthogonal with respect to the standard inner-products, but with respect to some new inner-products involving differential or difference operators: the so-called Sobolev orthogonal polynomials. In particular, he shows that the obtaining polynomials are limiting cases of the Laguerre, Meixner–Pollaczek and Meixner polynomials.

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
11B83 Special sequences and polynomials

Citations:

Zbl 0022.01502

References:

[1] N.I. Akhiezer, The classical moment problem and some related questions in analysis.; N.I. Akhiezer, The classical moment problem and some related questions in analysis. · Zbl 0135.33803
[2] Al-Salam, W. A., On a characterization of Meixner’s polynomials, Quart. J. Math. Oxford Ser. (2), 17, 7-10 (1966) · Zbl 0133.32305
[3] W.A. Al-Salam, Characterization theorems for orthogonal polynomials, in: Orthogonal Polynomials, Columbus, OH, 1989, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 294, Kluwer Academic Publisher, Dordrecht, 1990, pp. 1-24.; W.A. Al-Salam, Characterization theorems for orthogonal polynomials, in: Orthogonal Polynomials, Columbus, OH, 1989, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 294, Kluwer Academic Publisher, Dordrecht, 1990, pp. 1-24. · Zbl 0704.42021
[4] Al-Salam, W. A.; Verma, A., Generalized Sheffer polynomials, Duke Math. J., 37, 361-365 (1970) · Zbl 0205.07603
[5] Álvarez de Morales, M.; Pérez, T. E.; Piñar, M. A., Sobolev orthogonality for the Gegenbauer polynomials \(\{C_n^{(- N + 1 / 2)} \}_{n \geqslant 0}\), J. Comput. Appl. Math., 100, 1, 111-120 (1998) · Zbl 0931.33008
[6] Álvarez de Morales, M.; Pérez, T. E.; Piñar, M. A.; Ronveaux, A., Non-standard orthogonality for Meixner polynomials, Electron. Trans. Numer. Anal., 9, 1-25 (1999), (electronic) · Zbl 0949.33004
[7] Araaya, T. K., The Meixner-Pollaczek polynomials and a system of orthogonal polynomials in a strip, J. Comput. Appl. Math., 170, 2, 241-254 (2004) · Zbl 1053.33004
[8] Area, I.; Godoy, E.; Marcellán, F., Inner products involving differences: the Meixner-Sobolev polynomials, J. Differential Equations Appl., 6, 1, 1-31 (2000) · Zbl 0948.33004
[9] Area, I.; Godoy, E.; Marcellán, F.; Moreno-Balcázar, J. J., Ratio and Plancherel-Rotach asymptotics for Meixner-Sobolev orthogonal polynomials, J. Comput. Appl. Math., 116, 1, 63-75 (2000) · Zbl 0984.42016
[10] Askey, R., Orthogonal Polynomials and Special Functions (1975), SIAM: SIAM Philadelphia, PA · Zbl 0298.26010
[11] Barrucand, P., Sur les polynômes d’Appell généralisés, C. R. Acad. Sci. Paris Sér. A-B, 274, A1109-A1111 (1972) · Zbl 0244.33018
[12] Bavinck, H.; Meijer, H. G., Orthogonal polynomials with respect to a symmetric inner product involving derivatives, Appl. Anal., 33, 1-2, 103-117 (1989) · Zbl 0648.33007
[13] Bavinck, H.; Meijer, H. G., On orthogonal polynomials with respect to an inner product involving derivatives: zeros and recurrence relations, Indag. Math. N.S., 1, 1, 7-14 (1990) · Zbl 0704.42023
[14] Bertola, M., Bilinear semiclassical moment functionals and their integral representation, J. Approx. Theory, 121, 1, 71-99 (2003) · Zbl 1020.44009
[15] Cachafeiro, A.; Marcellán, F.; Moreno-Balcázar, J. J., On asymptotic properties of Freud-Sobolev orthogonal polynomials, J. Approx. Theory, 125, 1, 26-41 (2003) · Zbl 1043.33005
[16] Carlitz, L., Some arithmetic properties of a special sequence of polynomials, Duke Math. J., 26, 583-590 (1959) · Zbl 0095.26202
[17] Carlitz, L., Some arithmetic properties of a special sequence of polynomials in the Gaussian field, Duke Math. J., 30, 15-24 (1963) · Zbl 0113.03405
[18] Chihara, T. S., An Introduction to Orthogonal Polynomials (1978), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers New York · Zbl 0389.33008
[19] De Morales, M.Á.; Pérez, T. E.; Piñar, M. A., Orthogonal polynomials associated with a \(\Delta \)-Sobolev inner product, J. Differential Equations Appl., 8, 2, 125-151 (2002) · Zbl 0997.39007
[20] Di Bucchianico, A., Representations of Sheffer polynomials, Stud. Appl. Math., 93, 1, 1-14 (1994) · Zbl 0818.33010
[21] Di Bucchianico, A.; Loeb, D., A simpler characterization of Sheffer polynomials, Stud. Appl. Math., 92, 1, 1-15 (1994) · Zbl 0795.05018
[22] Draux, A.; Elhami, C., On the positivity of some bilinear functionals for discrete Sobolev orthogonal polynomials, Rend. Mat. Appl. (7), 21, 1-4, 39-55 (2001) · Zbl 1048.33010
[23] Duran, A. J., A generalization of Favard’s theorem for polynomials satisfying a recurrence relation, J. Approx. Theory, 74, 1, 83-109 (1993) · Zbl 0789.41017
[24] Everitt, W. N.; Littlejohn, L. L.; Wellman, R., The Sobolev orthogonality and spectral analysis of the Laguerre polynomials \(\{L_n^{- k} \}\) for positive integers \(k\), J. Comput. Appl. Math., 171, 1-2, 199-234 (2004) · Zbl 1063.33009
[25] Favard, J., Sur les polynomes de Tchebycheff, C. R. Acad. Sci. Paris, 200, 2052-2053 (1935) · JFM 61.0288.01
[26] Han, S. S.; Jung, I. H.; Kwon, K. H.; Lee, J. K., A non-standard class of Sobolev orthogonal polynomials, Commun. Korean Math. Soc., 12, 4, 935-950 (1997) · Zbl 0943.42015
[27] Hofbauer, J., A representation of Sheffer polynomials in terms of a differential equation for their generating functions, Aequationes Math., 23, 2-3, 156-168 (1981) · Zbl 0505.33011
[28] Iserles, A.; Koch, P. E.; Nørsett, S. P.; Sanz-Serna, J. M., On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory, 65, 2, 151-175 (1991) · Zbl 0734.42016
[29] Jung, H. S.; Kwon, K. H.; Lee, D. W., Discrete Sobolev orthogonal polynomials and second order difference equations, J. Korean Math. Soc., 36, 2, 381-402 (1999) · Zbl 0927.33008
[30] I.H. Jung, K.H. Kwon, D.W. Lee, L.L. Littlejohn, Differential equations and Sobolev orthogonality, in: Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions, Delft, 1994, vol. 65, 1995, pp. 173-180.; I.H. Jung, K.H. Kwon, D.W. Lee, L.L. Littlejohn, Differential equations and Sobolev orthogonality, in: Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions, Delft, 1994, vol. 65, 1995, pp. 173-180. · Zbl 0847.33007
[31] Jung, I. H.; Kwon, K. H.; Yoon, G. J., Differential equations of infinite order for Sobolev-type orthogonal polynomials, J. Comput. Appl. Math., 78, 2, 277-293 (1997) · Zbl 0887.33010
[32] Kaijser, S., Some “new” orthogonal polynomials, Normat, 47, 4, 156-165, 188 (1999) · Zbl 0957.33007
[33] Kelisky, R., The numbers generated by \(\exp(\arctanx )\), Duke Math. J., 26, 569-581 (1959) · Zbl 0103.02603
[34] Kim, D. H.; Kwon, K. H.; Marcellán, F.; Park, S. B., Sobolev-type orthogonal polynomials and their zeros, Rend. Mat. Appl. (7), 17, 3, 423-444 (1997) · Zbl 0891.33005
[35] Kochneff, E., Expansions in Laguerre polynomials of negative order, J. Approx. Theory, 81, 3, 332-346 (1995) · Zbl 0840.33004
[36] Koekoek, J.; Koekoek, R.; Bavinck, H., On differential equations for Sobolev-type Laguerre polynomials, Trans. Amer. Math. Soc., 350, 1, 347-393 (1998) · Zbl 0886.33006
[37] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\) http://aw.twi.tudelft.nl/koekoek/askey/; R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\) http://aw.twi.tudelft.nl/koekoek/askey/
[38] Kwon, K. H.; Lee, D. W.; Littlejohn, L. L., Sobolev orthogonal polynomials and second order differential equation. II, Bull. Korean Math. Soc., 33, 1, 135-170 (1996) · Zbl 0910.33003
[39] Kwon, K. H.; Littlejohn, L. L., The orthogonality of the Laguerre polynomials \(\{L_n^{- k}(x) \}\) for positive integers \(k\), Ann. Numer. Math., 2, 1-4, 289-303 (1995) · Zbl 0831.33003
[40] Kwon, K. H.; Littlejohn, L. L., Sobolev orthogonal polynomials and second-order differential equations, Rocky Mountain J. Math., 28, 2, 547-594 (1998) · Zbl 0930.33004
[41] Lebedev, N. N., Special Functions and their Applications (1972), Dover Publications Inc.: Dover Publications Inc. New York · Zbl 0271.33001
[42] F. Marcellán, M. Alfaro, M.L. Rezola, Orthogonal polynomials on Sobolev spaces: old and new directions, in: Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA), Granada, 1991, vol. 48, 1993, pp. 113-131.; F. Marcellán, M. Alfaro, M.L. Rezola, Orthogonal polynomials on Sobolev spaces: old and new directions, in: Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA), Granada, 1991, vol. 48, 1993, pp. 113-131. · Zbl 0790.42015
[43] Marcellán, F.; Álvarez-Nodarse, R., On the “Favard theorem” and its extensions, J. Comput. Appl. Math., 127, 1-2, 231-254 (2001) · Zbl 0970.33008
[44] Marcellán, F.; Meijer, H. G.; Pérez, T. E.; Piñar, M. A., An asymptotic result for Laguerre-Sobolev orthogonal polynomials, J. Comput. Appl. Math., 87, 1, 87-94 (1997) · Zbl 0886.33008
[45] Marcellán, F.; Moral, L., Sobolev-type orthogonal polynomials on the unit circle, Appl. Math. Comput., 128, 2-3, 329-363 (2002) · Zbl 1033.42025
[46] F. Marcellán, T.E. Pérez, M.A. Piñar, Gegenbauer-Sobolev orthogonal polynomials, in: Nonlinear Numerical Methods and Rational Approximation, II (Wilrijk, 1993), Mathematical Applications, vol. 296, Kluwer Academic Publishers, Dordrecht, 1994, pp. 71-82.; F. Marcellán, T.E. Pérez, M.A. Piñar, Gegenbauer-Sobolev orthogonal polynomials, in: Nonlinear Numerical Methods and Rational Approximation, II (Wilrijk, 1993), Mathematical Applications, vol. 296, Kluwer Academic Publishers, Dordrecht, 1994, pp. 71-82. · Zbl 0815.33008
[47] Marcellán, F.; Pérez, T. E.; Piñar, M. A., Orthogonal polynomials on weighted Sobolev spaces: the semiclassical case, Ann. Numer. Math., 2, 1-4, 93-122 (1995), Special functions (Torino, 1993) · Zbl 0835.33005
[48] Marcellán, F.; Pérez, T. E.; Piñar, M. A., Regular Sobolev type orthogonal polynomials: the Bessel case, Rocky Mountain J. Math., 25, 4, 1431-1457 (1995) · Zbl 0858.42016
[49] Marcellán, F.; Pérez, T. E.; Piñar, M. A., Laguerre-Sobolev orthogonal polynomials, J. Comput. Appl. Math., 71, 2, 245-265 (1996) · Zbl 0855.33015
[50] Marcellán, F.; Pérez, T. E.; Piñar, M. A.; Ronveaux, A., General Sobolev orthogonal polynomials, J. Math. Anal. Appl., 200, 3, 614-634 (1996) · Zbl 0860.33007
[51] Marcellán, F.; Sánchez-Ruiz, J., Connection coefficients for Laguerre-Sobolev orthogonal polynomials, J. Math. Anal. Appl., 283, 2, 440-458 (2003) · Zbl 1033.42027
[52] Meijer, H. G., Laguerre polynomials generalized to a certain discrete Sobolev inner product space, J. Approx. Theory, 73, 1, 1-16 (1993) · Zbl 0771.42015
[53] Meijer, H. G., A short history of orthogonal polynomials in a Sobolev space. I, The non-discrete case, Nieuw Arch. Wisk. (4), 14, 1, 93-112 (1996), 31st Dutch Mathematical Conference, Groningen, 1995 · Zbl 0862.33001
[54] Meijer, H. G.; Piñar, M. A., A generating function for Laguerre-Sobolev orthogonal polynomials, J. Approx. Theory, 120, 1, 111-123 (2003) · Zbl 1146.33300
[55] Meixner, J., Orthogonale Polynomsystem mit linern besonderen Gestalt der eryengenden Funktion, J. London Math. Soc., 9, 1, 6-13 (1934) · JFM 60.0293.01
[56] Nikiforov, A. F.; Suslov, S. K.; Uvarov, V. B., Classical Orthogonal Polynomials of a Discrete Variable (1991), Springer: Springer Berlin · Zbl 0743.33001
[57] Popa, E. C., Note on Sheffer polynomials, Octogon Math. Mag., 5, 2, 56-57 (1997)
[58] Popa, E. C., On the Sheffer polynomials, Bul. Ştiinţ. Univ. Politeh. Timiş. Ser. Mat. Fiz., 43(57), 1, 21-23 (1998) · Zbl 0974.44006
[59] Sheffer, I. M., Some properties of polynomial sets of type zero, Duke Math. J., 5, 590-622 (1939) · Zbl 0022.01502
[60] Sheffer, I. M., Some applications of certain polynomial classes, Bull. Amer. Math. Soc., 47, 885-898 (1941) · Zbl 0027.39503
[61] Temme, N. M., Special Functions (1996), A Wiley-Interscience Publication, Wiley: A Wiley-Interscience Publication, Wiley New York · Zbl 0863.33002
[62] J. Wimp, H. Kiesel, Some properties of the Sobolev-Laguerre polynomials, in: Proceedings of the Eighth Symposium on Orthogonal Polynomials and their Applications, Seville, 1997, vol. 99, 1998, pp. 401-412.; J. Wimp, H. Kiesel, Some properties of the Sobolev-Laguerre polynomials, in: Proceedings of the Eighth Symposium on Orthogonal Polynomials and their Applications, Seville, 1997, vol. 99, 1998, pp. 401-412. · Zbl 0942.33003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.