×

Ratio and Plancherel-Rotach asymptotics for Meixner-Sobolev orthogonal polynomials. (English) Zbl 0984.42016

The authors study the monic Meixner-Sobolev polynomials \(\{Q_n(x)\}\), orthogonal with respect to the inner product (derived from the Pascal distribution): \[ (p,q)_S=(p,q)+\lambda (\Delta p,\Delta q) = \sum_{i=0}^{\infty} \{p(i)q(i)+\lambda\Delta p(i)\Delta q(i)\}{\mu^i(\gamma)_i\over i!}, \] where \(\gamma>0\), \(0<\mu<1\), \(\lambda\geq 0\), \(\Delta\) the forward difference operator with \((\Delta f)(x)=f(x+1)-f(x)\) and \((\gamma)_n\) the Pochhammer symbol (ascending factorial).
For \(\lambda=0\) we have the ordinary Meixner polynomials \(M_n^{(\gamma,\mu)}(x)\).
The main results are:
\(\bullet\) recurrence relations and bounds for \({\widetilde k}_n=\|Q_n\|^2_S\),
\(\bullet\) the limit behaviour of \({\widetilde k}_n/k_n^{(\gamma,\mu)}\) for \(n\rightarrow\infty\;(k_n^{(\gamma,\mu)}= \|M_n^{(\gamma,\mu)}\|^2)\),
\(\bullet\) the relative asymptotics for \(Q_n(x)/M_n^{(\gamma,\mu)}(x)\) with \(x\in\mathbb{C}\setminus [0,\infty)\),
\(\bullet\) that the contracted zeroes \(\{x_{i,n}/n\}_{i=1}^n\) of \(Q_n\) accumulate on \([0,(1+\sqrt{\mu})^2/(1-\mu)\),
\(\bullet\) Plancherel-Rotach asymptotics for \[ Q_n(nx)/\left\{\sqrt{k_n^{(\gamma,\mu)}}\prod_{i=1}^n \varphi\left({nx_i-b_ i) \over 2a_i}\right)\right\} \] where \(a_i=\sqrt{\mu i(i+\gamma-1)}/(1-\mu), b_i=\{(1+\mu)i+\gamma\mu\}/(1-\mu)\) and \(\varphi(x)=x+\sqrt{x^2-1}\) with \(\sqrt{x^2-1}>0\) for \(x>1\).
A nicely written paper.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] I. Area, E. Godoy, F. Marcellán, Inner products involving differences: The Meixner-Sobolev polynomials, J. Differential Equations Appl., in press.; I. Area, E. Godoy, F. Marcellán, Inner products involving differences: The Meixner-Sobolev polynomials, J. Differential Equations Appl., in press. · Zbl 0948.33004
[2] Bavinck, H., On polynomials orthogonal with respect to an inner product involving differences, J. Comput. Appl. Math., 57, 17-27 (1995) · Zbl 0823.42014
[3] Bavinck, H., On polynomials orthogonal with respect to an inner product involving differences (The general case), Appl. Anal., 59, 233-240 (1995) · Zbl 0842.42015
[4] Bavinck, H., A difference operator of infinite order with Sobolev-type Charlier polynomials as eigenfunctions, Indag. Mathem. N.S., 7, 3, 281-291 (1996) · Zbl 0865.33007
[5] Bavinck, H.; Koekoek, R., Difference operators with Sobolev type Meixner polynomials as eigenfunctions, Comput. Math. Appl., 36, 163-177 (1998) · Zbl 0933.39043
[6] Evans, W. D.; Littlejohn, L. L.; Marcellán, F.; Markett, C.; Ronveaux, A., On recurrence relations for Sobolev orthogonal polynomials, SIAM J. Math. Anal., 26, 2, 446-467 (1995) · Zbl 0824.33006
[7] W. Gautschi, Orthogonal polynomials: applications and computation, in: A. Iserles (Ed.), Acta Numerica, Vol. 5, Cambridge University Press, Cambridge, 1996, pp. 45-119.; W. Gautschi, Orthogonal polynomials: applications and computation, in: A. Iserles (Ed.), Acta Numerica, Vol. 5, Cambridge University Press, Cambridge, 1996, pp. 45-119. · Zbl 0871.65011
[8] Gautschi, W.; Zhang, M., Computing orthogonal polynomials in Sobolev spaces, Numer. Math., 71, 2, 159-183 (1995) · Zbl 0830.65012
[9] O. Kovác̆ik, Sobolev spaces defined by differences, Proceedings of Seminar on Orthogonal Polynomials and other Applications (SOPOA), Department of Mathematics, Faculty of Civil Engineering, University of Transport and Communications, Z̆ilina, Slovakia, Vol. 1, 1993, pp. 19-24.; O. Kovác̆ik, Sobolev spaces defined by differences, Proceedings of Seminar on Orthogonal Polynomials and other Applications (SOPOA), Department of Mathematics, Faculty of Civil Engineering, University of Transport and Communications, Z̆ilina, Slovakia, Vol. 1, 1993, pp. 19-24. · Zbl 0798.46023
[10] Lewis, D. C., Polynomial least square approximations, Amer. J. Math., 69, 273-278 (1947) · Zbl 0033.35603
[11] Marcellán, F.; López, G.; van Assche, W., Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product, Constr. Approx., 11, 107-137 (1995) · Zbl 0840.42017
[12] Marcellán, F.; Meijer, H. G.; Pérez, T. E.; Piñar, M. A., An asymptotic result for Laguerre-Sobolev orthogonal polynomials, J. Comput. Appl. Math., 87, 87-94 (1997) · Zbl 0886.33008
[13] F. Marcellán, J.J. Moreno-Balcázar, Strong and Plancherel-Rotach asymptotics of non-diagonal Laguerre-Sobolev orthogonal polynomials, submitted for publication.; F. Marcellán, J.J. Moreno-Balcázar, Strong and Plancherel-Rotach asymptotics of non-diagonal Laguerre-Sobolev orthogonal polynomials, submitted for publication. · Zbl 0983.42013
[14] A. Martı́nez-Finkelshtein, Bernstein-Szegő’s theorem for Sobolev orthogonal polynomials, Constr. Approx, in press.; A. Martı́nez-Finkelshtein, Bernstein-Szegő’s theorem for Sobolev orthogonal polynomials, Constr. Approx, in press.
[15] Martı́nez-Finkelshtein, A.; Moreno-Balcázar, J. J., Asymptotics of Sobolev orthogonal polynomials for a Jacobi weight, Methods Appl. Anal., 4, 4, 430-437 (1997) · Zbl 0897.33010
[16] Martı́nez-Finkelshtein, A.; Moreno-Balcázar, J. J.; Pérez, T. E.; Piñar, M. A., Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures, J. Approx. Theory, 92, 280-293 (1998) · Zbl 0898.42006
[17] A. Martı́nez-Finkelshtein, H. Pijeira-Cabrera, Strong asymptotics for Sobolev orthogonal polynomials, J. Anal. Math., in press.; A. Martı́nez-Finkelshtein, H. Pijeira-Cabrera, Strong asymptotics for Sobolev orthogonal polynomials, J. Anal. Math., in press. · Zbl 0937.42011
[18] Máté, A.; Nevai, P., A generalization of Poincaré’s Theorem for recurrence equations, J. Approx. Theory, 63, 92-97 (1990) · Zbl 0715.34131
[19] Meixner, J., Orthogonale Polynomsysteme mit einer besonderen gestalt der erzeugenden Funktion, J. London Math. Soc., 9, 6-13 (1934) · JFM 60.0293.01
[20] L.M. Milne-Thomson, The Calculus of Finite Differences, MacMillan & Co., London, 1933.; L.M. Milne-Thomson, The Calculus of Finite Differences, MacMillan & Co., London, 1933. · JFM 59.1111.01
[21] J.J. Moreno-Balcázar, Propiedades Analı́ticas de los Polinomios Ortogonales de Sobolev continuos, Ph.D. Thesis, Departamento de Matemática Aplicada, Universidad de Granada, 1997.; J.J. Moreno-Balcázar, Propiedades Analı́ticas de los Polinomios Ortogonales de Sobolev continuos, Ph.D. Thesis, Departamento de Matemática Aplicada, Universidad de Granada, 1997.
[22] A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991.; A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991. · Zbl 0743.33001
[23] Plancherel, M.; Rotach, W., Sur les valeurs asymptotiques des polynômes d’Hermite, Comment. Math. Helv., 1, 227-254 (1925) · JFM 55.0799.02
[24] Poincaré, H., Sur les équations linéaires aux différentielles ordinaires et aux différences finies, Amer. J. Math., 7, 203-258 (1885) · JFM 17.0290.01
[25] W. van Assche, Asymptotics for orthogonal polynomials, Springer, Berlin, 1987.; W. van Assche, Asymptotics for orthogonal polynomials, Springer, Berlin, 1987. · Zbl 0617.42014
[26] W. van Assche, Asymptotics for orthogonal polynomials and three-term recurrences, in: P. Nevai (Ed.), Orthogonal Polynomials: Theory and Practice NATO ASI Series, Serie C, Vol. 294, Kluwer Academic Publishers, Dordrecht, 1990, pp. 435-462.; W. van Assche, Asymptotics for orthogonal polynomials and three-term recurrences, in: P. Nevai (Ed.), Orthogonal Polynomials: Theory and Practice NATO ASI Series, Serie C, Vol. 294, Kluwer Academic Publishers, Dordrecht, 1990, pp. 435-462. · Zbl 0697.42023
[27] van Assche, W.; Geronimo, J. S., Asymptotics for Orthogonal Polynomials with regularly varying recurrence coefficients, Rocky Mountain J. Math., 19, 39-49 (1989) · Zbl 0694.41039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.