×

Realizing doubles: a conjugation zoo. (English) Zbl 1464.55017

Many spaces with a \(C_2\)-action have the feature that their fixed points have the same cohomology up to scaling. For example, complex projective spaces with the complex conjugation action have this feature. Hausmann-Holm-Puppe made this observation precise in [J.-C. Hausmann et al., Algebr. Geom. Topol. 5, 923–964 (2005; Zbl 1081.55006)] and called these spaces ‘conjugation spaces’. In this paper, the authors address two main questions regarding conjugation spaces: the existence of exotic conjugation spaces, and realizability.
A conjugation space is said to be exotic if it is not homotopy equivalent to a conjugation space built from so-called conjugation cells, and they exhibit various examples of these. With regards to the second question, the authors investigate what spaces can be realized as the fixed points of a conjugation space. Their main result in this direction shows that the homotopy type of any simply connected 4 dimensional Poincaré complex can be realized in this way. The results of the paper are illustrated with many interesting examples.

MSC:

55P91 Equivariant homotopy theory in algebraic topology
57S17 Finite transformation groups
55S10 Steenrod algebra
55S35 Obstruction theory in algebraic topology

Citations:

Zbl 1081.55006

References:

[1] Adams, J. F.. On the non-existence of elements of Hopf invariant one. Ann. Math.72 (1960), 20-104. · Zbl 0096.17404
[2] Araki, S. and Iriye, K.. Equivariant stable homotopy groups of spheres with involutions. I. Osaka Math. J.19 (1982), 1-55. · Zbl 0488.55012
[3] Berrick, A. J. and Casacuberta, C.. A universal space for plus-constructions. Topology38 (1999), 467-477. · Zbl 0933.55016
[4] Bousfield, A. K. and Kan, D. M.. Homotopy limits, completions and localizations. , vol. 304 (Berlin: Springer-Verlag, 1972). · Zbl 0259.55004
[5] Cannon, J. W.. Shrinking cell-like decompositions of manifolds. Codimension three. Ann. Math.110 (1979), 83-112. · Zbl 0424.57007
[6] Dickson, L. E.. On quaternions and their generalization and the history of the eight square theorem. Ann. Math.20 (1919), 155-171. · JFM 47.0099.01
[7] Dold, A.. Erzeugende der thomschen algebra \({\mathfrak{N}} \). Math. Z.65 (1956), 25-35. · Zbl 0071.17601
[8] Dugger, D. and Isaksen, D. C.. \( \mathbb{Z}/2\)-equivariant and \(\mathbb{R} \)-motivic stable stems. Proc. Am. Math. Soc.145 (2017), 3617-3627. · Zbl 1421.55011
[9] Floyd, E. E.. The number of cells in a non-bounding manifold. Ann. Math.98 (1973), 210-225. · Zbl 0272.57019
[10] Franz, M. and Puppe, V.. Steenrod squares on conjugation spaces. C. R. Math. Acad. Sci. Paris342 (2006), 187-190. · Zbl 1087.55012
[11] Hambleton, I. and Hausmann, J.-C.. Conjugation spaces and 4-manifolds. Math. Z.269 (2011), 521-541. · Zbl 1239.57036
[12] Hausmann, J.-C., Holm, T. and Puppe, V.. Conjugation spaces. Algebr. Geom. Topol.5 (2005), 923-964. · Zbl 1081.55006
[13] Hill, M. A., Hopkins, M. J. and Ravenel, D. C.. On the nonexistence of elements of Kervaire invariant one. Ann. Math.184 (2016), 1-262. · Zbl 1366.55007
[14] Hilton, P. J.. On the homotopy groups of the union of spheres. J. London Math. Soc.30 (1955), 154-172. · Zbl 0064.17301
[15] Hurwitz, A.. Über die komposition der quadratischen formen. Math. Ann.88 (1922), 1-25. · JFM 48.1164.03
[16] Milnor, J. and Husemoller, D.. Symmetric bilinear forms. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73 (New York-Heidelberg: Springer-Verlag, 1973). · Zbl 0292.10016
[17] Mukai, J. and Shinpo, T.. Some homotopy groups of the mod 4 Moore space. J. Fac. Sci. Shinshu Univ.34 (1999), 1-14. · Zbl 0948.55013
[18] Olbermann, M.. Conjugations on 6-manifolds. Math. Ann.342 (2008), 255-271. · Zbl 1154.57034
[19] Olbermann, M.. Involutions on S^6 with 3-dimensional fixed point set. Algebr. Geom. Topol.10 (2010), 1905-1932. · Zbl 1214.57028
[20] Pitsch, W., Ricka, N. and Scherer, J.. Conjugation spaces are cohomologically pure. ArXiv e-prints, available at https://arxiv.org/abs/1908.03088.
[21] Pitsch, W. and Scherer, J.. Conjugation spaces and equivariant Chern classes. Bull. Belg. Math. Soc. Simon Stevin20 (2013), 77-90. · Zbl 1278.57034
[22] Schwartz, L.. Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture. Chicago Lectures in Mathematics (Chicago, IL: University of Chicago Press, 1994). · Zbl 0871.55001
[23] Sieradski, A. J.. Stabilization of self-equivalences of the pseudoprojective spaces. Michigan Math. J.19 (1972), 109-119. · Zbl 0242.55010
[24] Thom, R.. Quelques propriétés globales des variétés différentiables. Comment. Math. Helv.28 (1954), 17-86. · Zbl 0057.15502
[25] Wall, C. T. C.. Surgery on compact manifolds. London Mathematical Society Monographs, No. 1. (London-New York: Academic Press, 1970). · Zbl 0219.57024
[26] Whitehead, G. W.. Elements of homotopy theory. Graduate Texts in Mathematics, vol. 61 (New York-Berlin: Springer-Verlag, 1978). · Zbl 0406.55001
[27] Wu, J.. Homotopy theory of the suspensions of the projective plane. Mem. Am. Math. Soc.162 (2003), no. 769, x+130 pp. · Zbl 1022.55009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.