×

Realizing default logic over description logic knowledge bases. (English) Zbl 1245.68183

Sossai, Claudio (ed.) et al., Symbolic and quantitative approaches to reasoning with uncertainty. 10th European conference, ECSQARU 2009, Verona, Italy, July 1–3, 2009. Proceedings. Berlin: Springer (ISBN 978-3-642-02905-9/pbk). Lecture Notes in Computer Science 5590. Lecture Notes in Artificial Intelligence, 602-613 (2009).
Summary: We consider a realization of Reiter-style default logic on top of description logic knowledge bases (DL-KBs). To this end, we present elegant transformations from default theories to conjunctive query (cq-)programs that combine rules and ontologies, based on different methods to find extensions of default theories. The transformations, which are implemented in a front-end to a DL-reasoner, exploit additional constraints to prune the search space via relations between default conclusions and justifications. The front-end is a flexible tool for customizing the realization, allowing to develop alternative or refined default semantics. To our knowledge, no comparable implementation is available.
For the entire collection see [Zbl 1165.68020].

MSC:

68T27 Logic in artificial intelligence
68T30 Knowledge representation

Software:

Racer
Full Text: DOI

References:

[1] Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1-2), 81–132 (1980) · Zbl 0435.68069 · doi:10.1016/0004-3702(80)90014-4
[2] Baader, F., Hollunder, B.: Embedding Defaults into Terminological Knowledge Representation Formalisms. J. Autom. Reasoning 14(1), 149–180 (1995) · doi:10.1007/BF00883932
[3] Straccia, U.: Default inheritance reasoning in hybrid KL-ONE-style logics. In: IJCAI 1993, pp. 676–681. Morgan Kaufmann, San Francisco (1993)
[4] Padgham, L., Zhang, T.: A terminological logic with defaults: A definition and an application. In: IJCAI 1993, pp. 662–668. Morgan Kaufmann, San Francisco (1993)
[5] Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Logic 3(2), 177–225 (2002) · Zbl 1365.68403 · doi:10.1145/505372.505373
[6] Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic operator for description logics. Artif. Intell. 100(1-2), 225–274 (1998) · Zbl 0906.68144 · doi:10.1016/S0004-3702(98)00009-5
[7] Cadoli, M., Donini, F.M., Schaerf, M.: Closed world reasoning in hybrid systems. In: Methodologies for Intelligent Systems (ISMIS 1990), pp. 474–481. North-Holland, Amsterdam (1990)
[8] Bonatti, P.A., Lutz, C., Wolter, F.: Expressive non-monotonic description logics based on circumscription. In: KR 2006, pp. 400–410. AAAI Press, Menlo Park (2006)
[9] Gómez, S., Chesñevar, C., Simari, G.: An argumentative approach to reasoning with inconsistent ontologies. In: KROW 2008. CRPIT, vol. 90, pp. 11–20. ACS (2008)
[10] Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and Ontologies for the Semantic Web. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 1–53. Springer, Heidelberg (2008) · doi:10.1007/978-3-540-85658-0_1
[11] Eiter, T., Ianni, G., Krennwallner, T., Schindlauer, R.: Exploiting conjunctive queries in description logic programs. Ann. Math. Artif. Intell (2009); Published online January 27 (2009) · Zbl 1165.68499
[12] Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. Artif. Intell. 172(12-13) (2008) · Zbl 1183.68595 · doi:10.1016/j.artint.2008.04.002
[13] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge (2003) · Zbl 1058.68107
[14] Cholewinski, P., Truszczynski, M.: Minimal number of permutations sufficient to compute all extensions a finite default theory (unpublished note)
[15] Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declarative rules with external evaluations for semantic web reasoning. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006) · doi:10.1007/11762256_22
[16] Haarslev, V., Möller, R.: Racer system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 701–706. Springer, Heidelberg (2001) · Zbl 0988.68599 · doi:10.1007/3-540-45744-5_59
[17] Eiter, T., Fink, M., Krennwallner, T.: Decomposition of Declarative Knowledge Bases with External Functions. In: IJCAI 2009 (July 2009) (to appear)
[18] Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfiability. J. Web Semant. 1(4), 345–357 (2004) · doi:10.1016/j.websem.2004.06.003
[19] Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: The making of a Web ontology language. J. Web Semant. 1(1), 7–26 (2003) · doi:10.1016/j.websem.2003.07.001
[20] Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999) · Zbl 0947.68134 · doi:10.1007/3-540-48242-3_11
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.