×

Simulations of natural transition in viscoelastic channel flow. (English) Zbl 1383.76288

Summary: Orderly, or natural, transition to turbulence in dilute polymeric channel flow is studied using direct numerical simulations of a FENE-P fluid. Three Weissenberg numbers are simulated and contrasted to a reference Newtonian configuration. The computations start from infinitesimally small Tollmien-Schlichting (TS) waves and track the development of the instability from the early linear stages through nonlinear amplification, secondary instability and full breakdown to turbulence. At the lowest elasticity, the primary TS wave is more unstable than the Newtonian counterpart, and its secondary instability involves the generation of \(\Lambda\)-structures which are narrower in the span. These subsequently lead to the formation of hairpin packets and ultimately breakdown to turbulence. Despite the destabilizing influence of weak elasticity, and the resulting early transition to turbulence, the final state is a drag-reduced turbulent flow. At the intermediate elasticity, the growth rate of the primary TS wave matches the Newtonian value. However, unlike the Newtonian instability mode which reaches a saturated equilibrium condition, the instability in the polymeric flow reaches a periodic state where its energy undergoes cyclical amplification and decay. The spanwise size of the secondary instability in this case is commensurate with the Newtonian \(\Lambda\)-structures, and the extent of drag reduction in the final turbulent state is enhanced relative to the lower elasticity condition. At the highest elasticity, the exponential growth rate of the TS wave is weaker than the Newtonian flow and, as a result, the early linear stage is prolonged. In addition, the magnitude of the saturated TS wave is appreciably lower than the other conditions. The secondary instability is also much wider in the span, with weaker ejection and without hairpin packets. Instead, streamwise-elongated streaks are formed and break down to turbulence via secondary instability. The final state is a high-drag-reduction flow, which approaches the Virk asymptote.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76A10 Viscoelastic fluids
76F06 Transition to turbulence

References:

[1] Agarwal, A.; Brandt, L.; Zaki, T. A., Linear and nonlinear evolution of a localised disturbance in polymeric channel flow, J. Fluid Mech., 760, 278-303, (2014) · doi:10.1017/jfm.2014.586
[2] Agarwal, A., Brandt, L. & Zaki, T. A.2015Transition to turbulence in viscoelastic channel flow. In IUTAM ABCM Symposium on Laminar Turbulent Transition, Proc. IUTAM 14, pp. 519-526.
[3] Atalik, K.; Keunings, R., Non-linear temporal stability analysis of viscoelastic plane channel flows using a fully-spectral method, J. Non-Newtonian Fluid Mech., 102, 299-319, (2002) · Zbl 0992.76036 · doi:10.1016/S0377-0257(01)00184-7
[4] Chilcott, N. D.; Rallison, J. M., Creeping flow of dilute polymer solution past cylinders and spheres, J. Non-Newtonian Fluid Mech., 29, 381-432, (1988) · Zbl 0669.76016 · doi:10.1016/0377-0257(88)85062-6
[5] Cruz, D. O. A.; Pinho, F. T.; Oliveira, P. J., Analytical solutions for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution, J. Non-Newtonian Fluid Mech., 132, 28-35, (2005) · Zbl 1195.76086 · doi:10.1016/j.jnnfm.2005.08.013
[6] Dimitropoulos, C. D.; Dubief, Y.; Shaqfeh, E. S. G.; Moin, P.; Lele, S. K., Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow, Phys. Fluids, 17, (2005) · Zbl 1187.76127 · doi:10.1063/1.1829751
[7] Dimitropoulos, C. D.; Sureshkumar, R.; Beris, A. N., Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of the variation of rheological parameters, J. Non-Newtonian Fluid Mech., 79, 433-468, (1998) · Zbl 0960.76057 · doi:10.1016/S0377-0257(98)00115-3
[8] Dubief, Y.; Terrapon, V. E.; Soria, J., On the mechanism of elasto-inertial turbulence, Phys. Fluids, 25, (2013) · doi:10.1063/1.4820142
[9] Dubief, Y.; Terrapon, V. E.; White, C. M.; Shaqfeh, E. S. G.; Moin, P.; Lele, S. K., New answers on the interaction between polymers and vortices in turbulent flows, Flow Turbul. Combust., 74, 311-329, (2005) · Zbl 1200.76106 · doi:10.1007/s10494-005-9002-6
[10] Dubief, Y.; White, C. M.; Terrapon, V. E.; Shaqfeh, E. S. G.; Moin, P.; Lele, S. K., On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows, J. Fluid Mech., 514, 271-280, (2004) · Zbl 1067.76052 · doi:10.1017/S0022112004000291
[11] Fattal, R.; Kupferman, R., Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation, J. Non-Newtonian Fluid Mech., 126, 23-37, (2005) · Zbl 1099.76044 · doi:10.1016/j.jnnfm.2004.12.003
[12] Hack, M. J. P.; Zaki, T. A., Streak instabilities in boundary layers beneath free-stream turbulence, J. Fluid Mech., 741, 280-315, (2014) · doi:10.1017/jfm.2013.677
[13] Herbert, T., Secondary instability of boundary layers, Annu. Rev. Fluid Mech., 20, 487-526, (1988) · doi:10.1146/annurev.fl.20.010188.002415
[14] Ho, T. C.; Denn, M. M., Stability of plane Poiseuille flow of a highly elastic liquid, J. Non-Newtonian Fluid Mech., 3, 179-195, (1977) · Zbl 0414.76008 · doi:10.1016/0377-0257(77)80048-7
[15] Hoda, N.; Jovanovic, M. R.; Kumar, S., Energy amplification in channel flows of viscoelastic fluids, J. Fluid Mech., 601, 407-424, (2008) · Zbl 1151.76372 · doi:10.1017/S0022112008000633
[16] Hoda, N.; Jovanović, M. R.; Kumar, S., Frequency responses of streamwise-constant perturbations in channel flows of Oldroyd-B fluids, J. Fluid Mech., 625, 411-434, (2009) · Zbl 1171.76364 · doi:10.1017/S0022112009006223
[17] Jeong, J.; Hussain, F., On the identification of a vortex, J. Fluid Mech., 285, 69-94, (1995) · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[18] Kim, K.; Adrian, R. J.; Balachandar, S.; Sureshkumar, R., Dynamics of hairpin vortices and polymer-induced turbulent drag reduction, Phys. Rev. Lett., 100, (2008)
[19] Kim, K.; Li, C.-F.; Sureshkumar, R.; Balachandar, S.; Adrian, R. J., Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow, J. Fluid Mech., 584, 281-299, (2007) · Zbl 1175.76069 · doi:10.1017/S0022112007006611
[20] Kim, K.; Sureshkumar, R., Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reduced turbulent channel flows, Phys. Rev. E, 87, (2013)
[21] Klebanoff, P. S.; Tidstrom, K. D.; Sargent, L. M., The three-dimensional nature of boundary-layer instability, J. Fluid Mech., 12, 1-42, (1962) · Zbl 0131.41901 · doi:10.1017/S0022112062000014
[22] Kleiser, L.; Zang, T. A., Numerical simulation of transition in wall-bounded shear flows, Annu. Rev. Fluid Mech., 23, 495-537, (1991) · doi:10.1146/annurev.fl.23.010191.002431
[23] Landau, L. D., On the problem of turbulence, Dokl. Akad. Nauk SSSR, 44, 311-314, (1944) · Zbl 0063.03437
[24] Larson, R. G., Instabilities in viscoelastic flows, Rheol. Acta, 31, 213-263, (1992) · doi:10.1007/BF00366504
[25] Li, C.-F.; Sureshkumar, R.; Khomami, B., Influence of rheological parameters on polymer induced turbulent drag reduction, J. Non-Newtonian Fluid Mech., 140, 23-40, (2006) · Zbl 1143.76337 · doi:10.1016/j.jnnfm.2005.12.012
[26] Min, T.; Yoo, J. Y.; Choi, H., Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows, J. Non-Newtonian Fluid Mech., 100, 27-47, (2001) · Zbl 1134.76409 · doi:10.1016/S0377-0257(01)00128-8
[27] Min, T.; Yoo, J. Y.; Choi, H.; Joseph, D. D., Drag reduction by polymer additives in a turbulent channel flow, J. Fluid Mech., 486, 213-238, (2003) · Zbl 1054.76041 · doi:10.1017/S0022112003004610
[28] Nishioka, M.; Iida, S.; Ichikawa, Y., An experimental investigation of the stability of plane Poiseuille flow, J. Fluid Mech., 72, 731-751, (1975) · doi:10.1017/S0022112075003254
[29] Orszag, S. A.; Patera, A. T., Secondary instability of wall-bounded shear flows, J. Fluid Mech., 128, 347-385, (1983) · Zbl 0556.76039 · doi:10.1017/S0022112083000518
[30] Page, J.; Zaki, T. A., Streak evolution in viscoelastic Couette flow, J. Fluid Mech., 742, 520-551, (2014) · doi:10.1017/jfm.2013.686
[31] Page, J.; Zaki, T. A., The dynamics of spanwise vorticity perturbations in homogeneous viscoelastic shear flow, J. Fluid Mech., 777, 327-363, (2015) · Zbl 1381.76020 · doi:10.1017/jfm.2015.368
[32] Porteous, K. C.; Denn, M. M., Linear stability of plane Poiseuille flow of viscoelastic liquids, Trans. Soc. Rheol., 16, 2, 295-308, (1972) · Zbl 0362.76079 · doi:10.1122/1.549279
[33] Rosenfeld, M.; Kwak, D.; Vinokur, M., A fractional step solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems, J. Comput. Phys., 94, 102-137, (1991) · Zbl 0718.76079 · doi:10.1016/0021-9991(91)90139-C
[34] Sadanandan, B.; Sureshkumar, R., Viscoelastic effects on the stability of wall-bounded shear flows, Phys. Fluids, 14, 1, 41-48, (2002) · Zbl 1184.76468 · doi:10.1063/1.1425847
[35] Samanta, D. S.; Dubief, Y.; Holzner, H.; Schäfer, C.; Morozov, A. N.; Wagner, C.; Hof, B., Elasto-inertial turbulence, Proc. Natl Acad. Sci. USA, 110, 10557-10562, (2013) · doi:10.1073/pnas.1219666110
[36] Sandham, N. D.; Kleiser, L., The late stages of transition to turbulence in channel flow, J. Fluid Mech., 245, 319-348, (1992) · Zbl 0825.76312 · doi:10.1017/S002211209200048X
[37] Sayadi, T.; Hamman, C. W.; Moin, P., Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers, J. Fluid Mech., 724, 480-509, (2013) · Zbl 1287.76138 · doi:10.1017/jfm.2013.142
[38] Schlichting, H.1933 Zur Entstehung der Turbulenz bei der Plattenströmung. Nach. Ges. Wiss. Gottingen, Math.-Phys. Klasse. 181-208. · JFM 59.0767.03
[39] Schubauer, G. B.; Skramstad, H. K., Laminar boundary layer oscillations and stability of laminar flow, J. Aero. Sci., 14, 2, 69-78, (1947)
[40] Shu, C.-W., High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51, 1, 82-126, (2009) · Zbl 1160.65330 · doi:10.1137/070679065
[41] Stuart, J. T., On the non-linear mechanics of hydrodynamic stability, J. Fluid Mech., 4, 1-21, (1958) · Zbl 0081.41001 · doi:10.1017/S0022112058000276
[42] Terrapon, V. E.; Dubief, Y.; Soria, J., On the role of pressure in elasto-inertial turbulence, J. Turbul., 16, 1, 26-43, (2014) · doi:10.1080/14685248.2014.952430
[43] Tollmien, W.1929 Über die Entstehung der Turbulenz. 1. Mitteilung. Nachr. Ges. Wiss. Gottingen, Math.-Phys. Klasse. 21-44. (Translation in Tollmien, W. 1931 NACA Tech. Rep. TM-609).
[44] Vaithianathan, T.; Collins, L. R., Numerical approach to simulating turbulent flow of a viscoelastic polymer solution, J. Comput. Phys., 187, 1-21, (2003) · Zbl 1047.76524 · doi:10.1016/S0021-9991(03)00028-7
[45] Vaithianathan, T.; Robert, A.; Brasseur, J. G.; Collins, L. R., An improved algorithm for simulating three-dimensional, viscoelastic turbulence, J. Non-Newtonian Fluid Mech., 140, 3-22, (2006) · Zbl 1143.76349 · doi:10.1016/j.jnnfm.2006.03.018
[46] Vaughan, N. J.; Zaki, T. A., Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks, J. Fluid Mech., 681, 116-153, (2011) · Zbl 1241.76183 · doi:10.1017/jfm.2011.177
[47] Virk, P. S.; Mickley, H. S., The ultimate asymptote and mean flow structures in Tom’s phenomenon, Trans. ASME E: J. Appl. Mech., 37, 488-493, (1970) · doi:10.1115/1.3408532
[48] Warholic, M. D.; Massah, H.; Hanratty, T. J., Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing, Exp. Fluids, 27, 461-471, (1999) · doi:10.1007/s003480050371
[49] White, F. M., Viscous Fluid Flow, (2006), McGraw-Hill
[50] Zaki, T. A., From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition, Flow Turbul. Combust., 91, 451-473, (2013) · doi:10.1007/s10494-013-9502-8
[51] Zhang, M.; Lashgari, I.; Zaki, T. A.; Brandt, L., Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids, J. Fluid Mech., 737, 249-279, (2013) · Zbl 1294.76119 · doi:10.1017/jfm.2013.572
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.